首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7265篇
  免费   921篇
  国内免费   728篇
化学   4225篇
晶体学   55篇
力学   315篇
综合类   50篇
数学   569篇
物理学   1622篇
无线电   2078篇
  2024年   54篇
  2023年   220篇
  2022年   249篇
  2021年   346篇
  2020年   315篇
  2019年   306篇
  2018年   254篇
  2017年   260篇
  2016年   318篇
  2015年   307篇
  2014年   385篇
  2013年   505篇
  2012年   482篇
  2011年   522篇
  2010年   369篇
  2009年   380篇
  2008年   386篇
  2007年   366篇
  2006年   356篇
  2005年   290篇
  2004年   235篇
  2003年   232篇
  2002年   275篇
  2001年   192篇
  2000年   150篇
  1999年   162篇
  1998年   134篇
  1997年   121篇
  1996年   84篇
  1995年   103篇
  1994年   83篇
  1993年   67篇
  1992年   65篇
  1991年   46篇
  1990年   39篇
  1989年   28篇
  1988年   22篇
  1987年   13篇
  1986年   32篇
  1985年   33篇
  1984年   19篇
  1983年   20篇
  1982年   13篇
  1981年   12篇
  1980年   8篇
  1979年   10篇
  1977年   4篇
  1974年   7篇
  1973年   7篇
  1969年   4篇
排序方式: 共有8914条查询结果,搜索用时 31 毫秒
991.
Smart molecular crystals with light-driven mechanical responses have received interest owing to their potential uses in molecular machines, artificial muscles, and biomimetics. However, challenges remain in control over both the dynamic photo-mechanical behaviors and static photonic properties of molecular crystals based on the same molecule. Herein, we show the construction of isostructural co-crystals allows their light-induced cracking and jumping behaviors (photosalient effect) to be controlled. Hydrogen-bonded co-crystals from 4-(1-naphthylvinyl)pyridine ( NVP ) with co-formers (tetrafluoro-4-hydroxybenzoic acid ( THA ) and tetrafluorobenzoic acid ( TA )) crystallize as isostructural crystals, but have different static and dynamic photo-mechanical behaviors. These differences are due to alternations in the orientation of NVP and hydrogen-bonding modes of the co-formers. After light activation, the 1D NVP-TA crystal splits and shears off within 1 s. For NVP-THA , its photostability and high quantum yield give novel photonic properties, including low optical waveguide loss, highly polarized anisotropy, and efficient up-conversion fluorescence.  相似文献   
992.
The successful commercialization of promising silicon-based anode materials has been hampered by their poor cycling stability caused by the huge volume change. Integration of the carbon matrix with silicon-based (C/Si-based) anode materials has been demonstrated to be a powerful solution to achieve satisfactory electrochemical performance. This minireview aims to outline recent developments on C/Si-based composites, with the emphasis on the importance of carbon distribution at multiple scales. In addition, the forms of the carbon framework (carbon sources and doping of heteroatoms) have been summarized. Particularly, a novel C/Si-based hybrid with carbon distributed at the atomic scale has been highlighted.  相似文献   
993.
Ending group halogenation is an effective strategy for modulating the energy levels, bandgaps, and intermolecular interactions of nonfullerene acceptors. Understanding the influence of different halogen atoms on the acceptor properties is of great importance for designing high-performance nonfullerene acceptors. Here, three acceptor–donor–acceptor (A-D-A) type nonfullerene acceptors (M5, M6, and M7), which are constructed by using a ladder-type heteroheptacene core without the traditional sp3 carbon-bonded side chains as the electron-rich core, and 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile without or with halogen atoms as the ending groups. The nonfullerene acceptors with chlorinated (M6) and brominated (M7) ending groups exhibit broadened absorption spectra, down-shifted energy levels, and enhanced molecular ordering compared to the counterpart without any halogenated ending groups (M5). Among the nonfullerene acceptors, M6 has the strongest intermolecular π π interaction with its shortest π π interaction distance and the longest coherent length which are beneficial for enhancing the charge transport and therefore boosting the photovoltaic performance. An excellent power conversion efficiency of 15.45% is achieved for the best-performing polymer solar cell based on M6. These results suggest that the halogenated ending groups are essential for high-performance heteroheptacene-based nonfullerene acceptors considering their simultaneous enhancements in both the light-harvesting and the charge transport.  相似文献   
994.
Fiber-like π-conjugated nanostructures are important components of flexible organic electronic and optoelectronic devices. To broaden the range of potential applications, one needs to control not only the length of these nanostructures, but the introduction of diverse functionality with spatially selective control. Here we report the synthesis of a crystalline-coil block copolymer of oligo(p-phenylenevinylene)-b-poly(2-vinylpyridine) (OPV5-b-P2VP44), in which the basicity and coordinating/chelating ability of the P2VP segment provide a landscape for the incorporation of a variety of functional inorganic NPs. Through a self-seeding strategy, we were able to prepare monodisperse fiber-like micelles of OPV5-b-P2VP44 with lengths ranging from 50 to 800 nm. Significantly, the exposed two ends of OPV core of these fiber-like micelles remained active toward further epitaxial deposition of OPV5-b-PNIPAM49 and OPV5-b-P2VP44 to generate uniform A-B-A and B-A-B-A-B segmented block comicelles with tunable lengths for each block. The P2VP domains in these (co-)micelles can be selectively decorated with inorganic and polymeric nanoparticles as well as metal oxide coatings, to afford hybrid fiber-like nanostructures. This work provides a versatile strategy toward the fabrication of narrow length dispersity continuous and segmented π-conjugated OPV-containing fiber-like micelles with the capacity to be decorated in a spatially selective way with varying functionalities.  相似文献   
995.
Single‐chain folding via intramolecular noncovalent interaction is regarded as a facile mimicry of biomacromolecules. Single‐chain folding and intramolecular crosslinking is also an effective method to prepare polymer nanoparticles. In this study, poly(methyl methacrylate‐co?2‐ureido‐5‐deazapterines functionalized ethylene methacrylate) (P(MMA‐co‐EMA‐DeAP)) is synthesized via free radical polymerization. The single‐chain folding of P(MMA‐co‐EMA‐DeAP) and the formation of the nanoparticles in diluted solution (concentration <0.005 mg/mL) are achieved via supramolecular interaction and intramolecular collapsing during the disruption‐reformation process of the hydrogen bonding triggered by water. The size and the morphology of the nanoparticles are characterized by dynamic light scattering, transmission electron microscope, and atomic force microscope. The results show that the size of the nanoparticles depends on the molecular weight of the polymer and the loading of 2‐ureido‐5‐deazapterines functionalized ethylene methacrylate (EMA‐DeAP) on the polymer backbone. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1832–1840  相似文献   
996.
A polymeric hybrid micelle (PHM) system with highly tunable properties is reported to co‐deliver small molecule and nucleic acid drugs for cancer therapy; this system is structurally simple and easy‐to‐fabricate. The PHM consists of two amphiphilic diblock copolymers, polycaprolactone‐polyethylenimine (PCL‐PEI) and polycaprolactone‐polyethyleneglycol (PCL‐PEG). PHMs are rationally designed with different physicochemical properties by simply adjusting the ratio of the two diblock copolymers and the near neutral PHM‐2 containing a low ratio of PCL‐PEI achieves the optimal balance between high tumor distribution and subsequent cellular uptake after intravenous injection. Encapsulating Hedgehog (Hh) pathway inhibitor vismodegib (VIS) and microRNA‐34a (miR‐34a) into PHM‐2 generates the VIS/PHM‐2/34a co‐delivery system. VIS/PHM‐2/34a shows synergistic anticancer efficacy in murine B16F10‐CD44+ cells, a highly metastatic tumor model of melanoma. VIS/PHM‐2/34a synergistically attenuates the expression of CD44, a vital receptor indicating the metastasis of melanoma. Intriguingly, inhibiting Hh pathway by VIS is accompanied by downregulation of CD44 expression, revealing that Hh signaling might be an upstream regulator of CD44 expression in melanoma. Thus, co‐delivery of miR‐34a and VIS demonstrates great potential in cancer therapy, and PHM offers a structurally simple and highly tunable platform for the co‐delivery of small molecule and nucleic acid drugs in tumor combination therapy.  相似文献   
997.
998.
A highly efficient 2-chloroquinazolin-4(3H)-one rearrangement was developed that predictably generates either twisted-cyclic or ring-fused guanidines in a single operation, depending on the presence of a primary versus secondary amine in the accompanying diamine reagent. Exclusive formation of twisted-cyclic guanidines results from pairing 2-chloroquinazolinones with secondary diamines. Use of primary amine-containing diamines permits a domino quinazolinone rearrangement/intramolecular cyclization, gated through (E)-twisted-cyclic guanidines, to afford ring-fused N-acylguanidines. This scalable, structurally tolerant transformation generated 55 guanidines and delivered twisted-cyclic guanidines with robust plasma stability and an abbreviated total synthesis of an antitumor ring-fused guanidine (4 steps, 55 % yield).  相似文献   
999.
Two new eudesmane derivatives, 1α,6β,9β-trihydroxy-eudesm-3-ene-1-O-β-d -glucopyranoside ( 1 ) and 1α,6β,9β-trihydroxy-eudesm-3-ene-1-(6-cinnamoyl)-O-β-d -glucopyranoside ( 2 ) were discovered from Merremia yunnanensis. The structures were elucidated by analysis of their spectroscopic data including HR-ESI-MS, 1D, and 2D NMR. It should be noted that this is the first report about structure elucidation and NMR assignment of compounds from Myunnanensis.  相似文献   
1000.
A series of 10 polythiophene derivatives is reported, in which each polymer has a different percentage of carboxylic acid‐bearing repeat units. The properties of these polymers are explored under acidic conditions, where the carboxylic acid moieties remain neutral, and under basic conditions, where the carboxylic acid units become anionic carboxylates. The properties that are examined for both solutions and films include UV–vis absorption spectroscopy, photoluminescence spectroscopy, and red‐edge optical band gaps. All the properties studied are strongly dependent both on protonation state and percentage of carboxylic acid/carboxylate side chains along the polymer backbone. The anionic form of each polythiophene derivative was also used in layer‐by‐layer film deposition with a cationic phosphonium polyelectrolyte. The film growth process was studied by spectroscopic techniques to assess the influence of side‐chain composition on the film growth and optical properties. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号