首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   5篇
化学   27篇
力学   1篇
物理学   6篇
无线电   10篇
  2023年   1篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   4篇
  2012年   4篇
  2011年   8篇
  2010年   5篇
  2009年   3篇
  2007年   1篇
  2004年   1篇
  1995年   1篇
  1969年   2篇
排序方式: 共有44条查询结果,搜索用时 234 毫秒
21.
The efficacy of electrical brain stimulation in combatting neurodegenerative diseases and initiating function is expected to be significantly enhanced with the development of smaller scale microstimulation electrodes and refined stimulation protocols. These benefits cannot be realized without a thorough understanding of scaling effects on electrochemical charge injection characteristics. This study fabricates and characterizes the electrochemical stimulation capabilities of Au, Pt, poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS/Au), and PEDOT:PSS/Pt electrode arrays in the 20–2000 µm diameter range. This study observes substantial enhancement in charge injection capacity up to 9.5× for PEDOT:PSS microelectrodes compared to metal ones, and 88% lower required power for injecting the same charge density. These significant benefits are strongest for electrode diameters below 200 µm. Detailed quantitative analyses are provided, enabling optimization of charge injection capacity with potential bias and symmetric and asymmetric pulse width engineering for all diameters. These systematic analyses inform the optimal design for acute and potentially chronic implants in regards to safety and clinically effective stimulation protocols, ensure the longevity of the electrodes below critical electrochemical limits of stimulation, and demonstrate that the material choice and pulse design can lead to more energy efficiency stimulation protocols that are of critical importance for fully implanted devices.  相似文献   
22.

Nowadays, information and communication technology grows rapidly. The microelectronics and communication mediums also enhance their reachability of coverage and connectivity. 5G enhances the capacity of the network in terms of lowest communication latency, highest speed, enhanced throughput, minimum E2E delay, and minimizing the packet loss. In this paper, we discuss the working principle and key features of 5G communication technology along with the limitations of existing technologies. Further, we provide the taxonomy of the 5G network. Moreover, we provide a comparison of 5G and 4G LTE in terms of data privacy and security aspects. Further, we propose a four-layer architecture for ehealthcare system, which uses 5G NR (New Radio) architecture incorporating the control plane and user plane. We perform the simulation over the frequency range1 and frequency range2 and calculated the throughput and latency for distinct values of OFDM numerologies. Further, we provide a comparative analysis for 4G and 5G and deduce that 5G facilitates 10 times lower latency than 4G, and 5G can accommodate a much higher number of devices than 4G. In this work, we discuss providing better healthcare facilities electronically using 5G NR. Moreover, the data sharing and diagnosing the disease become faster and easier by using 5G NR.

  相似文献   
23.
24.
An efficient synthetic method has been developed for the facile synthesis of 2-substituted benzimidazoles in organized aqueous media in the presence of a surfactant (viz. DBSA) as catalyst and I2 as co-catalyst. The method described has the advantages of operational simplicity, excellent yields, high chemoselectivity, and clean and green reaction profile.  相似文献   
25.
Visceral leishmaniasis, most lethal form of Leishmaniasis, is caused by Leishmania infantum in the Old world. Current therapeutics for the disease is associated with a risk of high toxicity and development of drug resistant strains. Thiol‐redox metabolism involving trypanothione and trypanothione reductase, key for survival of Leishmania, is a validated target for rational drug design. Recently published structure of trypanothione reductase (TryR) from L. infantum, in oxidized and reduced form along with Sb(III), provides vital clues on active site of the enzyme. In continuation with our attempts to identify potent inhibitors of TryR, we have modeled binding modes of selected tricyclic compounds and quinone derivatives, using AutoDock4. Here, we report a unique binding mode for quinone derivatives and 9‐aminoacridine derivatives, at the FAD binding domain. A conserved hydrogen bonding pattern was observed in all these compounds with residues Thr335, Lys60, His461. With the fact that these residues aid in the orientation of FAD towards the active site forming the core of the FAD binding domain, designing selective and potent compounds that could replace FAD in vivo during the synthesis of Trypanothione reductase can be deployed as an effective strategy in designing new drugs towards Leishmaniasis. We also report the binding of Phenothiazine and 9‐aminoacridine derivatives at the Z site of the protein. The biological significance and possible mode of inhibition by quinone derivatives, which binds to FAD binding domain, along with other compounds are discussed. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   
26.
Although β-galactosidases are physiologically a very important enzyme and have may therapeutics applications, very little is known about the stability and the folding aspects of the enzyme. We have used β-galactosidase from Pisum sativum (PsBGAL) as model system to investigate stability, folding, and function relationship of β-galactosidases. PsBGAL is a vacuolar protein which has a tendency to multimerize at acidic pH with protein concentration ≥100 μg mL−1 and dissociates into its subunits above neutral pH. It exhibits maximum activity as well as stability under acidic conditions. Further, it has different conformational orientations and core secondary structures at different pH. Substantial predominance of β-content and interfacial interactions through Trp residues play crucial role in pH-dependent multimerization of enzyme. Equilibrium unfolding of PsBGAL at acidic pH follows four-state model when monitored by changes in the secondary structure with two intermediates: one resembling to molten globule-like state while unfolding seen from activity and tertiary structure of PsBGAL fits to two-state model. Unfolding of PsBGAL at higher pH always follows two-state model. Furthermore, unfolding of PsBGAL reveals that it has at least two domains: α/β barrel containing catalytic site and the other is rich in β-content responsible for enzyme multimerization.  相似文献   
27.
28.
Thin films of Cu(In,Ga)Se2 with various copper contents were deposited by co‐evaporation onto thermally oxidized silicon substrates. Characterization by real‐time spectroscopic ellipsometry reveals clear similarities among the samples, as well as key variations with Cu content. Although all films exhibit a Volmer–Weber nucleation and similar fundamental critical point energies in the analysis of optical properties, Cu‐rich films exhibit enhanced coalescence, smoother surfaces, larger grain sizes, as well as a sub‐bandgap absorption which is absent in Cu‐poor films. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
29.
Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase (SOD) and catalase (CAT) were successfully synthesized using double emulsion (w/o/w) solvent evaporation technique. Characterization of the nanosphere using dynamic light scattering, field emission scanning electron microscope, and Fourier transform infrared spectroscopy revealed a spherical-shaped nanosphere in a size range of 812?±?64 nm with moderate protein encapsulation efficiency of 55.42?±?3.7 % and high in vitro protein release. Human skin HaCat cells were used for analyzing antioxidative properties of SOD- and CAT-encapsulated PCL nanospheres. Oxidative stress condition in HaCat cells was optimized with exposure to hydrogen peroxide (H2O2; 1 mM) as external stress factor and verified through reactive oxygen species (ROS) analysis using H2DCFDA dye. PCL nanosphere encapsulating SOD and CAT together indicated better antioxidative defense against H2O2-induced oxidative stress in human skin HaCat cells in comparison to PCL encapsulating either SOD or CAT alone as well as against direct supplement of SOD and CAT protein solution. Increase in HaCat cells SOD and CAT activities after treatment hints toward uptake of PCL nanosphere into the human skin HaCat cells. The result signifies the role of PCL-encapsulating SOD and CAT nanosphere in alleviating oxidative stress.  相似文献   
30.
Procerain B is a novel cysteine protease isolated from Calotropis procera by our group and published recently. We have further characterized the enzyme by N-terminal sequencing and peptide mass fingerprinting. Procerain B showed maximum sequence similarity (80%) with Asclepain. Moreover, the characteristic VDWR motif of cysteine proteases is present in procerain B. The N-terminal and peptide mass fingerprinting analysis showed a distinct nature of the enzyme. Various applications of the enzyme were also evaluated. Procerain B is very effective in milk-clotting and may be a potential candidate for this process in the cheese industry. Additionally, the enzyme has potential application as dietary supplement to aid digestion. Effects of various metal ions on milk-clotting activity were also studied. The milk-clotting activity was increased in case of few metals while others have a negative effect. It is worth mentioning that the easy availability of plant material and simple purification method makes industrial production of the enzyme feasible. A protease with easy purification and suitable properties for application is always desired.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号