首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   475篇
  免费   34篇
  国内免费   8篇
化学   244篇
晶体学   3篇
力学   28篇
数学   50篇
物理学   87篇
无线电   105篇
  2023年   7篇
  2022年   6篇
  2021年   20篇
  2020年   24篇
  2019年   24篇
  2018年   30篇
  2017年   29篇
  2016年   40篇
  2015年   26篇
  2014年   29篇
  2013年   64篇
  2012年   56篇
  2011年   37篇
  2010年   18篇
  2009年   18篇
  2008年   15篇
  2007年   13篇
  2006年   10篇
  2005年   10篇
  2004年   3篇
  2003年   4篇
  2002年   8篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1985年   1篇
  1980年   1篇
排序方式: 共有517条查询结果,搜索用时 156 毫秒
511.
Homo bi-copper complexes [Cu2{PhP(2-py)2}2(NO3)3] (1) and [Cu2{P(2-py)3}2Cl2] (2), were synthesized from the reaction of Cu(NO3)2·3H2O and CuCl2·2H2O with their corresponding 2-pyridylphosphine ligands. Compound 1 has a mixed valence Cu(I)-Cu(II) core with electron acceptor phosphine atoms and two NO3 anions coordinated in a monodentate fashion to Cu(I), giving it a distorted tetrahedral geometry. The environment of Cu(II) in 1 is composed of four nitrogen atoms from pyridyl and another NO3 anion in a square pyramidal geometry. This complex shows luminescence and a low energy absorption band at 969 nm corresponding to intermetallic electron transfer between the copper centers. Complex 2 was prepared from the treatment of copper(II) chloride with tris(2-pyridyl)phosphine, producing a binuclear copper complex which possesses a crystallographic inversion center. The copper geometry in this complex is distorted tetrahedral with coordination of one Cl, two nitrogens from one bridging tris(2-pyridyl)phosphine ligand and one P atom from the other bridging tris(2-pyridyl)phosphine ligand, in a similar way observed in related complexes. The products have been characterized by spectroscopic methods and also by the single-crystal X-ray diffraction method.  相似文献   
512.
Sereshti H  Khojeh V  Samadi S 《Talanta》2011,83(3):885-890
In this study, dispersive liquid-liquid microextraction (DLLME) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed for simultaneous preconcentration and trace determination of chromium, copper, nickel and zinc in water samples. Sodium diethyldithiocarbamate (Na-DDTC), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. The effective parameters of DLLME such as volume of extraction and disperser solvents, pH, concentration of salt and concentration of the chelating agent were studied by a (2f−1) fractional factorial design to identify the most important parameters and their interactions. The results showed that concentration of salt and volume of disperser solvent had no effect on the extraction efficiency. In the next step, central composite design was used to obtain optimum levels of effective parameters. The optimal conditions were: volume of extraction solvent, 113 μL; concentration of the chelating agent, 540 mg L−1; and pH, 6.70. The linear dynamic range for Cu, Ni and Zn was 1-1000 μg L−1 and for Cr was 1-750 μg L−1. The correlation coefficient (R2) was higher than 0.993. The limits of detection were 0.23-0.55 μg L−1. The relative standard deviations (RSDs, C = 200 μg L−1, n = 7) were in the range of 2.1-3.8%. The method was successfully applied to determination of Cr, Cu, Ni and Zn in the real water samples and satisfactory relative recoveries (90-99%) were achieved.  相似文献   
513.
Synthesis of new imines and amines containing organosilicon groups   总被引:1,自引:0,他引:1  
The Peterson olefination reaction of terephthalaldehyde with tris(trimethylsilyl)methyl lithium, (Me3Si)3CLi, in THF at 0 °C gives 4-[2,2-bis(trimethylsilyl)ethenyl]benzaldehyde (1) and 4,4-bis[2,2-bis(trimethylsilyl)ethenyl]benzene (2). The new aldehyde (1) reacts with variety of amines in ethanol to afford the corresponding imines (3) containing vinylbis(trimethylsilyl) group. The newly synthesized imines (3) can be completely converted into amines containing vinylbis(trimethylsilyl) group with an excess amount of NaBH4. In the case of N-[4-(2,2-bis(trimethylsilyl)ethenyl)benzyl]-2,6-dimethylaniline LiAlH4 was used as a reducing agent in THF.  相似文献   
514.
Ecohydrological models vary in their sensitivity to forcing data and use available information to different extents. We focus on the impact of forcing precision on ecohydrological model behavior particularly by quantizing, or binning, time-series forcing variables. We use rate-distortion theory to quantize time-series forcing variables to different precisions. We evaluate the effect of different combinations of quantized shortwave radiation, air temperature, vapor pressure deficit, and wind speed on simulated heat and carbon fluxes for a multi-layer canopy model, which is forced and validated with eddy covariance flux tower observation data. We find that the model is more sensitive to radiation than meteorological forcing input, but model responses also vary with seasonal conditions and different combinations of quantized inputs. While any level of quantization impacts carbon flux similarly, specific levels of quantization influence heat fluxes to different degrees. This study introduces a method to optimally simplify forcing time series, often without significantly decreasing model performance, and could be applied within a sensitivity analysis framework to better understand how models use available information.  相似文献   
515.
Mucins are the key component of the defensive mucus barrier. They are extended fibers of very high molecular weight with diverse biological functions depending strongly on their specific structural parameters. Here, we present a mucin-inspired nanostructure, produced via a synthetic methodology to prepare methacrylate-based dendronized polysulfates ( MIP-1 ) on a multi gram-scale with high molecular weight (MW=450 kDa) and thiol end-functionalized mucin-inspired polymer ( MIP ) via RAFT polymerization. Cryo-electron tomography (Cryo-ET) analysis of MIP-1 confirmed a mucin-mimetic wormlike single-chain fiber structure (length=144±59 nm) in aqueous solution. This biocompatible fiber showed promising activity against SARS-CoV-2 and its mutant strain, with a remarkable low half maximal (IC50) inhibitory concentration (IC50=10.0 nM). Additionally, we investigate the impact of fiber length on SARS-CoV-2 inhibition by testing other functional polymers ( MIPs ) of varying fiber lengths.  相似文献   
516.
Recently, cloud computing has been recognized as an effective paradigm for offering an on-demand platform, software services, and an efficient infrastructure to cloud clients. Due to the exponential growth of cloud tasks and the rapidly increasing number of cloud users, scheduling and balancing these tasks among involved heterogeneous virtual machines becomes an Non-deterministic Polynomial hard (NP-hard) optimization problem considering significant constraints, such as high rate of resource usage, low scheduling time, and low implementation cost. Therefore, various meta-heuristic algorithms have been widely used to tackle the issue. The current paper proposes a novel load balancing mechanism using the ant colony optimization and artificial bee colony algorithms, called LBAA, which aims to balance the load division among systems in data centers. The simulation outcomes confirm that our algorithm outperforms previous works regarding response time, imbalance degree, makespan, and resource utilization up to 25%, 15%, 12%, and 10%, respectively.  相似文献   
517.
Burn is one of the physically debilitating injuries that can be potentially fatal; therefore, providing appropriate coverage in order to reduce possible mortality risk and accelerate wound healing is mandatory. In this study, collagen/exo-polysaccharide (Col/EPS 1–3%) scaffolds are synthesized from rainbow trout (Oncorhynchus mykiss) skins incorporated with Rhodotorula mucilaginosa sp. GUMS16, respectively, for promoting Grade 3 burn wound healing. Physicochemical characterizations and, consequently, biological properties of the Col/EPS scaffolds are tested. The results show that the presence of EPS does not affect the minimum porosity dimensions, while raising the EPS amount significantly reduces the maximum porosity dimensions. Thermogravimetric analysis (TGA), FTIR, and tensile property results confirm the successful incorporation of the EPS into Col scaffolds. Furthermore,the biological results show that the increasing EPS does not affect Col biodegradability and cell viability, and the use of Col/EPS 1% on rat models displays a faster healing rate. Finally, histopathological examination reveals that the Col/EPS 1% treatment accelerates wound healing, through greater re-epithelialization and dermal remodeling, more abundant fibroblast cells and Col accumulation. These findings suggest that Col/EPS 1% promotes dermal wound healing via antioxidant and anti-inflammatory activities, which can be a potential medical process in the treatment of burn wounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号