首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   476篇
  免费   19篇
  国内免费   2篇
化学   333篇
晶体学   7篇
力学   3篇
数学   19篇
物理学   100篇
无线电   35篇
  2023年   6篇
  2022年   3篇
  2021年   6篇
  2020年   15篇
  2019年   12篇
  2018年   5篇
  2017年   3篇
  2016年   12篇
  2015年   9篇
  2014年   13篇
  2013年   18篇
  2012年   30篇
  2011年   27篇
  2010年   14篇
  2009年   17篇
  2008年   30篇
  2007年   25篇
  2006年   27篇
  2005年   34篇
  2004年   29篇
  2003年   28篇
  2002年   20篇
  2001年   8篇
  2000年   10篇
  1999年   15篇
  1998年   9篇
  1997年   5篇
  1996年   8篇
  1995年   4篇
  1994年   7篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   8篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1983年   5篇
  1982年   5篇
  1976年   4篇
  1973年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有497条查询结果,搜索用时 31 毫秒
251.
In a search for natural products with activity to overcome tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistance, we performed the bioassay-guided fractionation of a semi mangrove, Pongamia pinnata, collected from Bangladesh, and isolated a new compound, (2S)-(2″,3″:7,8)-furanoflavanone (1), along with six known flavonoids (2-7). Two of the compounds significantly overcame TRAIL-resistance in human gastric adenocarcinoma (AGS) cell lines.  相似文献   
252.
253.
The construction and precise control of the face-to-face π-stacked arrangements of anthracene fluorophores in the crystalline state led to a remarkable red shift in the fluorescence spectrum due to unprecedented excited oligomer formation. The arrangements were regulated by using organic salts including anthracene-1,5-disulfonic acid (1,5-ADS) and a variety of aliphatic amines. Because of the smaller number of hydrogen atoms at the edge positions and the steric effect of the sulfonate groups, 1,5-ADS should prefer face-to-face π-stacked arrangements over the usual edge-to-face herringbone arrangement. Indeed, as the alkyl substituents were lengthened, the organic salts altered their anthracene arrangement to give two-dimensional (2D) edge-to-face and end-to-face herringbone arrangements, one-dimensional (1D) face-to-face zigzag and slipped stacking arrangements, a lateral 1D face-to-face arrangement like part of a brick wall, and a discrete monomer arrangement. The monomer arrangement behaved as a dilute solution even in the close-packed solid state to emit deep blue light. The 1D face-to-face zigzag and slipped stacking of the anthracene fluorophores caused a red shift of 30-40?nm in the fluorescence emission with respect to the discrete arrangement, probably owing to ground-state associations. On the other hand, the 2D end-to-face stacking induced a larger red shift of 60?nm, which is attributed to the excimer fluorescence. Surprisingly, the brick-like lateral face-to-face arrangement afforded a remarkable red shift of 150?nm to give yellow fluorescence. This anomalous red shift is probably due to excited oligomer formation in such a lateral 1D arrangement according to the long fluorescence lifetime and little shift in the excitation spectrum. The regulation of the π-stacked arrangement of anthracene fluorophores enabled the wide modulation of the fluorescence and a detailed investigation of the relationships between the photophysical properties and the arrangements.  相似文献   
254.
A method was developed for determination of inorganic anions, including nitrite (NO 2 ? ), nitrate (NO 3 ? ), bromide (Br?), and iodide (I?), in seawater by ion chromatography (IC). The IC system used two dilauryldimethylammonium bromide (DDAB)-coated monolithic ODS columns (50?×?4.6?mm i.d. and 100?×?4.6?mm i.d.) connected in series for separation of the ions. Aqueous NaCl (0.5?mol/L; flow rate, 3?mL/min) containing 5?mmol/L phosphate buffer (pH 5) was used as the eluent, and detection was with a UV detector at 225?nm. The monolithic ODS columns were coated and equilibrated with a 1-mmol/L DDAB solution (in H2O/methanol, 90:10 v/v). The hydrophilic ions (NO 2 ? , NO 3 ? , and Br?) were separated within 3?min and the retention time of I? was 16?min. No interferences from matrix ions, such as chloride and sulfate ions, were observed in 35?‰ artificial seawater. The detection limits were 0.6?μg/L for NO 2 ? , 1.1?μg/L for NO 3 ? , 70?μg/L for Br?, and 1.6?μg/L for I? with a 200-μL sample injection. The performance of the coated columns was maintained without addition of DDAB in the eluent. The IC system was successfully applied to real seawater samples with recovery rates of 94–108?% for all ions.
Figure
The hydrophilic ions (NO 2 ? , NO 3 ? , and Br?) and I? in seawater was determined by a single run using the IC system consisting of two dilauryldimethylammonium bromide (DDAB)-coated monolithic ODS columns (50?×?4.6?mm i.d. and 100?×?4.6?mm i.d.) connected in series, NaCl (0.5?mol/L; flow rate, 3?mL/min) containing 5?mmol/L phosphate buffer (pH 5) as the eluent, and a UV detector (225?nm). No interferences from matrix ions, such as chloride and sulfate ions, were observed in 35?‰ artificial and real seawaters.  相似文献   
255.
The purpose of this study was to evaluate the effect of gadoxetic acid (Gd-EOB-DTPA) on measurements of liver stiffness by using magnetic resonance elastography (MRE). In this study, 104 consecutive patients (mean age, 67.7±9.4 years) underwent MRE using a 1.5-T MR scanner equipped with a cylindrical passive driver that was placed across the right chest wall for delivering vibrations. Axial gradient-echo images, which were automatically converted to elastograms that represented stiffness (kPa), were acquired using a continuous sinusoidal vibration of 60 Hz. Two raters independently placed a region of interest on the right lobe of the liver on the elastograms obtained before and after Gd-EOB-DTPA was administered. Liver stiffness was measured using these two elastograms and compared using a paired t test and correlation analysis. No significant difference was observed in liver stiffness before and after Gd-EOB-DTPA was administered (Rater 1, P=.1200; Rater 2, P=.3585). The correlation coefficients were 0.986 (Rater 1) and 0.984 (Rater 2), indicating excellent correlation between the stiffness values before and after Gd-EOB-DTPA was administered. Liver stiffness measured by MRE did not differ before and after Gd-EOB-DTPA was administered.  相似文献   
256.
257.
Weakly exchange-coupled biradicals have attracted much attention in terms of their DNP application in NMR spectroscopy for biological systems or the use of synthetic electron-spin qubits. Pulse-ESR based electron spin nutation (ESN) spectroscopy applied to biradicals is generally treated as transition moment spectroscopy from the theoretical side, illustrating that it is a powerful and facile tool to determine relatively short distances between weakly exchange-coupled electron spins. The nutation frequency as a function of the microwave irradiation strength ω(1) (angular frequency) for any cases of weakly exchange-coupled systems can be classified into three categories; D(12) (spin dipolar interaction)-driven, Δg-driven and ω(1)-driven nutation behaviour with the increasing strength of ω(1). For hetero-spin biradicals, Δg effects can be a dominating characteristic in the biradical nutation spectroscopy. Two-dimensional pulse-based electron spin nutation (2D-ESN) spectroscopy operating at the X-band can afford to determine small values of D(12) in weakly exchange-coupled biradicals in rigid glasses. The analytical expressions derived here for ω(1)-dependent nutation frequencies are based on only four electronic spin states relevant to the biradicals, while real biradical systems often have sizable hyperfine interactions. Thus, we have evaluated nuclear hyperfine effects on the nutation frequencies to check the validity of the present theoretical treatment. The experimental spin dipolar coupling of a typical TEMPO-based biradical 1, (2,2,6,6-tetra[((2)H(3))methyl]-[3,3-(2)H(2),4-(2)H(1),5,5-(2)H(2)]piperidin-N-oxyl-4-yl)(2,2,6,6-tetra[((2)H(3))methyl]-[3,3-(2)H(2),4-(2)H(1),5,5-(2)H(2),(15)N]piperidin-(15)N-oxyl-4-yl) terephthalate in a toluene glass, with a distance of 1.69 nm between the two spin sites is D(12) = -32 MHz (the effect of the exchange coupling J(12) is vanishing due to the homo-spin sites of 1, i.e.Δg = 0), while 0 < |J(12)|≦ 1.0 MHz as determined by simulating the random-orientation CW ESR spectra of 1. In addition, we have carried out Q-band pulsed ELDOR (ELectron-electron DOuble Resonance) experiments to confirm whether the obtained values for D(12) and J(12) are accurate. The distance is in a fuzzy region for the distance-measurements capability of the conventional, powerful ELDOR spectroscopy. The strong and weak points of the ESN spectroscopy with a single microwave frequency applicable to weakly exchange-coupled multi-electron systems are discussed in comparison with conventional ELDOR spectroscopy. The theoretical spin dipolar tensor and exchange interaction of the TEMPO biradical, as obtained by sophisticated quantum chemical calculations, agree with the experimental ones.  相似文献   
258.
The reaction of a trinuclear rhenium sulfide cluster compound Re3S7Cl7 with dimethylphenylphosphine and CuX2 (X = Cl or Br) or CuX (X = Cl, Br, or I) formed tetranuclear cluster complexes [(Ph3P)2N][Re3(CuX)(mu3-S)4Cl6(PMe2Ph)3] (X = Cl, Br, or I). Their solutions have the characteristic intense blue color with visible spectral bands near 600 nm. Single-crystal X-ray structures show that three mu-S atoms in the intermediate trinuclear rhenium complex coordinate to a copper atom, forming elongated tetrahedral structures in which Re-Cu bonding interaction is negligible (Re-Cu distances are 3.50 to approximately 3.54 A as compared with Re-Re distances ranging from 2.69 to 2.81 A).  相似文献   
259.
A cobalt complex, [CoCl2(dpph)] (DPPH = [1,6-bis(diphenylphosphino)hexane]), catalyzes an intermolecular styrylation reaction of alkyl halides in the presence of Me3SiCH2MgCl in ether to yield beta-alkylstyrenes. A variety of alkyl halides including alkyl chlorides can participate in the styrylation. A radical mechanism is strongly suggested for the styrylation reaction. The sequential isomerization/styrylation reactions of cyclopropylmethyl bromide and 6-bromo-1-hexene provide evidence of the radical mechanism. Crystallographic and spectroscopic investigations on cobalt complexes reveal that the reaction would begin with single electron transfer from an electron-rich (diphosphine)bis(trimethylsilylmethyl)cobalt(II) complex followed by reductive elimination to yield 1,2-bis(trimethylsilyl)ethane and a (diphosphine)cobalt(I) complex. The combination of [CoCl2(dppb)] (DPPB = [1,4-bis(diphenylphosphino)butane]) catalyst and Me3SiCH2MgCl induces intramolecular Heck-type cyclization reactions of 6-halo-1-hexenes via a radical process. On the other hand, the intramolecular cyclization of the prenyl ether of 2-iodophenol would proceed in a fashion similar to the conventional palladium-catalyzed transformation. The nonradical oxidative addition of carbon(sp2)-halogen bonds to cobalt is separately verified by a cobalt-catalyzed cross-coupling reaction of alkenyl halides with Me3SiCH2MgCl with retention of configuration of the starting vinyl halides. The cobalt-catalyzed intermolecular radical styrylation reaction of alkyl halides is applied to stereoselective variants. Styrylations of 1-alkoxy-2-bromocyclopentane derivatives provide trans-1-alkoxy-2-styrylcyclopentane skeletons, one of which is optically pure.  相似文献   
260.
Reactions of CuX2.nH2O with the biscarboxylate ligand XDK (H2XDK = m-xylenediamine bis(Kemp's triacid imide)) in the presence of N-donor auxiliary ligands yielded a series of dicopper(II) complexes, [Cu2(mu-OH)(XDK)(L)2]X (L = N,N,N',N'-tetramethylethylenediamine (tetmen), X = NO3 (1a), Cl (1b); L = N,N,N'-trimethylethylenediamine (tmen), X = NO3 (2a), Cl (2b); L =2,2'-bipyridine (bpy), X = NO3 (3); L = 1,10-phenanthroline (phen), X = NO3 (4); L = 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), X = NO3 (5); L = 4-methyl-1,10-phenanthroline (Mephen), X = NO3 (6)). Complexes 1-6 were characterized by X-ray crystallography (Cu...Cu = 3.1624(6)-3.2910(4) A), and the electrochemical and magnetic properties were also examined. Complexes 3 and 4 readily reacted with diphenyl phosphoric acid (HDPP) or bis(4-nitrophenyl) phosphoric acid (HBNPP) to give [Cu2(mu-phosphate)(XDK)(L)2]NO3 (L = bpy, phosphate = DPP (11); L = phen, phosphate = DPP (12), BNPP (13)), where the phsophate diester bridges the two copper ions in a mu-1,3-O,O' bidentate fashion (Cu...Cu = 4.268(3)-4.315(1) A). Complexes 4 and 6 with phen and Mephen have proven to be good precursors to accommodate a series of sugar monophosphate esters (Sugar-P) onto the biscarboxylate-bridged dicopper centers, yielding [Cu2(mu-Sugar-P)(XDK)(L)2] (Sugar-P = alpha-D-Glc-1-P (23a and b), D-Glc-6-P (24a and b), D-Man-6-P (25a), D-Fru-6-P (26a and b); L = phen (a), Mephen (b)) and [Cu2(mu-Gly-n-P)(XDK)(Mephen)2] (Gly-n-P = glycerol n-phosphate; n = 2 (21), 3 (22)), where Glc, Man, and Fru are glucose, mannose, and fructose, respectively. The structure of [Cu2(mu-MNPP)(XDK)(phen)2(CH3OH)] (20) was characterized as a reference compound (H2MNPP = 4-nitrophenyl phosphoric acid). Complexes 4 and 6 also reacted with d-fructose 1,6-bisphosphate (D-Fru-1,6-P2) to afford the tetranuclear copper(II) complexes formulated as [Cu4(mu-D-Fru-1,6-P2)(XDK)2(L)4] (L = phen (27a), Mephen (27b)). The detailed structure of 27a was determined by X-ray crystallography to involve two different tetranuclear complexes with alpha- and beta-anomers of D-Fru-1,6-P2, [Cu4(mu-alpha-D-Fru-1,6-P2)(XDK)2(phen)4] and [Cu4(mu-beta-D-Fru-1,6-P2)(XDK)2(phen)4], in which the D-Fru-1,6-P2 tetravalent anion bridges the two [Cu2(XDK)(phen)2]2+ units through the C1 and C6 phosphate groups in a mu-1,3-O,O' bidentate fashion (Cu...Cu = 4.042(2)-4.100(2) A). Notably, the structure with alpha-D-Fru-1,6-P2 demonstrated the presence of a strong hydrogen bond between the C2 hydroxyl group and the C1 phosphate oxygen atom, which may support the previously proposed catalytic mechanism in the active site of fructose-1,6-bisphosphatase.  相似文献   
[首页] « 上一页 [21] [22] [23] [24] [25] 26 [27] [28] [29] [30] [31] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号