首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1308篇
  免费   80篇
  国内免费   6篇
化学   608篇
晶体学   7篇
力学   38篇
综合类   1篇
数学   91篇
物理学   252篇
无线电   397篇
  2023年   4篇
  2022年   5篇
  2021年   9篇
  2020年   20篇
  2019年   30篇
  2018年   18篇
  2017年   16篇
  2016年   34篇
  2015年   42篇
  2014年   39篇
  2013年   63篇
  2012年   89篇
  2011年   77篇
  2010年   60篇
  2009年   78篇
  2008年   68篇
  2007年   67篇
  2006年   58篇
  2005年   55篇
  2004年   45篇
  2003年   36篇
  2002年   38篇
  2001年   29篇
  2000年   33篇
  1999年   36篇
  1998年   25篇
  1997年   27篇
  1996年   21篇
  1995年   18篇
  1994年   16篇
  1993年   13篇
  1992年   13篇
  1991年   19篇
  1990年   10篇
  1989年   15篇
  1988年   20篇
  1987年   10篇
  1986年   6篇
  1985年   25篇
  1984年   15篇
  1983年   8篇
  1982年   6篇
  1981年   13篇
  1980年   4篇
  1979年   7篇
  1978年   6篇
  1977年   8篇
  1974年   8篇
  1973年   5篇
  1970年   4篇
排序方式: 共有1394条查询结果,搜索用时 11 毫秒
111.
In this study, a numerical thermal model is developed for sliding block contact under various loads, sliding velocities and surface roughness. The temperature distributions are shown for perfectly insulated thermal conditions along noncontact surfaces. For a particular five‐peaks contact model, the maximum temperature at the central peak is slightly lhigher than the others. The temperature profile decreases as the distance to the symmetry axis increases, and then decreases dramatically at the noncontact area. It is clear to see that the maximum temperature locates at the symmetry central peak of the asperity contact area instead of the leading head of the smooth surface. The maximum temperature rise parameter increases as the pressure, sliding velocity and asperity roughness increased or conductivity decreased. This phenomenon becomes obvious for cases at high pressure, velocity and roughness and low conductivity. Particularly, the influence of roughness is not significant for low velocity. Similar results are found for the maximum temperature rise parameter difference between peaks or peaks/valleys. The simulation results of this asperity surface sliding block contact model are able to provide essential information for the components of microelectro—mechanical systems (MEMS) and biochemical reaction mechanism. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
112.
Various mixed liquid crystals containing crown ether‐cholesteryl liquid crystal, benzo‐15‐crown‐5‐COO‐C27H45 (B15C5‐COOCh), with various common cholesteric liquid crystals, e.g., cholesteryl chloride, cholesteryl benzoate and cholesteryl palmitate, were prepared and studied using polarizing microscopy and differential scanning calorimetry. Investigating the concentration effect of B15C5‐COOCh in mixed liquid crystals revealed that the addition of B15C5‐COOCh resulted in wider phase transition temperature ranges of these cholesteryl liquid crystals. The stability of these B15C5‐COOCh/cholesteryl mixed liquid crystals was studied using comprehensive graphic molecular modeling computer programs (Insight II and Discover) to calculate their molecular energy and stability energy. The effect of salts, e.g. Na+, Co3+, Y3+ and La3+, on the transition temperature range of the mixed liquid crystals was also investigated. The crown ether cholesteric liquid crystal B15C5‐COOCh was applied both as a surfactant and an ion transport carrier to transport metal ions through liquid membranes. Cholesteryl benzo‐15‐crown‐5 exhibited distinctive characteristics of a surfactant and the critical micellar concentration (CMC) of the surfactant was investigated by the pyrene fluorescence probe method. Cholesteryl benzo‐15‐crown‐5 was successfully applied as a good ion transport carrier (Ionophore) to transport various metal ions, e.g. Li+, Na+, La3+, Fe3+ and Co3+, through organic liquid membranes. The transport ability of the cholesteryl benzo‐15‐crown‐5 surfactant for these metal ions was in the order: Co3+ ≥ Li+ > Fe3+ > Na+ > La3+.  相似文献   
113.
In general, it is a challenge to control the highly polar material grafting from the chemically inert Teflon-based membrane surface. This work describes the surface modification and characterization of expanded poly(tetrafluoroethylene) (ePTFE) membranes grafted with poly(ethylene glycol) methacrylate (PEGMA) macromonomer via surface-activated plasma treatment and thermally induced graft copolymerization. The chemical composition and microstructure of the surface-modified ePTFE membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), contact angle, and bio-atomic force microscopy (bio-AFM) measurements. Biofouling property of the modified membranes was evaluated by the measurements of the plasma protein (γ-globulin, fibrinogen, or albumin) adsorption determined using an enzyme-linked immunosorbent assay (ELISA). In general, the hydrophilicity of the surface of ePTFE membranes increases with increasing the grafting degree of the copolymerized PEGMA. The highly hydrated PEGMA chain on the resulting ePTFE membranes was found to form a surface hydrogel-like layer with regulated coverage in aqueous state, which can be controlled by the content of PEGMA macromonomer in the reaction solution. The relative protein adsorption was effectively reduced with increasing capacity of the hydration for the PEGMA chain grafted on the ePTFE membrane surface. From both results of protein adsorption and platelet adhesion test in vitro, it is concluded that the PEGMA-grafted hydrophilic ePTFE membranes could provide good biofouling resistance to substantially reduce plasma protein and blood platelet fouling on the membrane surface in human body temperature.  相似文献   
114.
CE allows for highly reproducible analysis of DNA fragments which can be used to detect DNA mutations including SNPs. We have utilized a simple and direct CE analysis method for SNP analysis called conformation-sensitive CE (CSCE), based on the principle of single nucleotide different to produce conformational changes in the mildly denaturing solvent system. This method was applied to analysis of a mutation in the promoter region of the hMSH2 gene. This gene belongs to the human DNA mismatch repair system, which is responsible for recognizing and repairing mispaired nucleotides, and mutations in the hMSH2 gene are known to cause hereditary nonpolyposis colorectal cancer (HNPCC). PCR fragments generated from the promoter region of the hMSH2 gene, displaying either a C/C homozygote, C/T heterozygote, or T/T homozygote genotype, did not require further pretreatment before electrokinetic injection. The CE separation, using a 1xTris-borate-EDTA (TBE) buffer containing 3% w/v hydroxylethyl cellulose (HEC) and 6 M urea, was performed under reverse polarity with a separation temperature of 15 degrees C. The genotypes of 204 healthy volunteers and 13 colorectal cancer patients were determined using CSCE, and the results confirmed by DNA sequencing. While the CSCE separations were shown to be highly reproducible and sensitive for screening large populations, no correlation was observed between cancer patients and this hMSH2 gene polymorphism.  相似文献   
115.
A flow injection analysis coupled with electrochemical detection at an activated barrel plating nickel electrode (Ni-BPE) was developed as a sensitive, simple, and low-cost formaldehyde sensor. The mechanism of Ni-BPE toward the electrocatalytic oxidation of formaldehyde in alkaline medium at ambient temperature was proposed to be based on the electrocatalytic oxidation of formaldehyde by Ni(III)O(OH) species. Under the optimized conditions (flow rate = 1.2 mL/min; detection potential = +0.5 V versus Ag/AgCl), a good linearity in the window of 0.037 to 10 microg/mL formaldehyde was observed, and the LOD of 0.23 microg/L was calculated. The RSDs of intraday (n = 10) and interday (n = 6) replicate measurements of 0.185-5 microg/mL formaldehyde ranged from 1.45 to 3.60%, indicating good reproducibility of the proposed method. The proposed method was successfully applied to the determination of formaldehyde in commercial nail polish samples and a drinking water sample.  相似文献   
116.
Titanium dioxide (TiO2), co-deposited with Fe and N, is first implanted with Fe by a metal plasma ion implantation (MPII) process and then annealed in N2 atmosphere at a temperature regime of 400-600 °C. First-principle calculations show that the (Fe, N) co-deposited TiO2 films produced additional band gap levels at the bottom of the conduction band (CB) and on the top of the valence band (VB). The (Fe, N) co-deposited TiO2 films were effective in both prohibiting electron-hole recombination and generating additional Fe-O and N-Ti-O impurity levels for the TiO2 band gap. The (Fe, N) co-deposited TiO2 has a narrower band gap of 1.97 eV than Fe-implanted TiO2 (3.14 eV) and N-doped TiO2 (2.16 eV). A significant reduction of TiO2 band gap energy from 3.22 to 1.97 eV was achieved, which resulted in the extension of photocatalytic activity of TiO2 from UV to Vis regime. The photocatalytic activity and removal rate were approximately two-fold higher than that of the Fe-implanted TiO2 under visible light irradiation.  相似文献   
117.
ZnO is a defect‐governed oxide and emits light at both visible and UV regimes. This work employs atomic layer deposition to produce oxide particles on oxygenated carbon nanotubes, and the composites only show emission profiles at short wavelengths. The quenching of defect‐related emissions at long wavelengths is verified, owing to carboxyl diffusion into oxygen vacancies, and doping is supported by ZnCO3 formation in oxide lattice. Fully coated tubes display an increased photocurrent and the quantum efficiency increases by 22 % relative to the bare nanotubes.  相似文献   
118.
Co0.2Mg x Zn0.8−x O films prepared with different molar ratio of magnesium acetate to zinc acetate were deposited on substrates by the sol–gel technique. X-ray diffraction, photoluminescence (PL) and ferromagnetism measurements were used to characterize the Co0.2Mg x Zn0.8−x O diluted magnetic semiconductors. The acceptor-like defects were determined in the PL band and the intensity of the acceptor-related PL increased with increasing Mg concentration. Therefore, an increase in the number of the acceptor-like defects (zinc vacancies especially) in the Co0.2Mg x Zn0.8−x O film may lead to the enhancement of the magnetic properties. It is worth noting that changes in Mg concentration and the number of the acceptor-like defects are important issues for producing strong ferromagnetism Co0.2Mg x Zn0.8−x O films prepared by the sol–gel method.  相似文献   
119.
Shih‐Kang Fu 《合成通讯》2013,43(14):2059-2067
A direct alkylation of a substituted imidazole to prepare the corresponding functionalized ionic liquid has been developed in excellent yields under microwave irradiation.  相似文献   
120.
A defined (P^N^N^P)–Ru complex possessing tertiary amines within the ligand backbone proved to be highly active both in transfer hydrogenations and hydrogenations of a variety of ketones. As compared to the existing catalytic systems, no bifunctional activation of H2 or of the substrate by the metal center and a secondary amine within the ligand backbone is required to obtain high activities at catalyst loadings of down to 10 ppm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号