首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1692篇
  免费   59篇
  国内免费   13篇
化学   834篇
晶体学   33篇
力学   30篇
数学   122篇
物理学   431篇
无线电   314篇
  2024年   11篇
  2023年   37篇
  2022年   39篇
  2021年   49篇
  2020年   41篇
  2019年   42篇
  2018年   43篇
  2017年   34篇
  2016年   65篇
  2015年   36篇
  2014年   51篇
  2013年   80篇
  2012年   120篇
  2011年   117篇
  2010年   66篇
  2009年   72篇
  2008年   96篇
  2007年   71篇
  2006年   72篇
  2005年   59篇
  2004年   48篇
  2003年   42篇
  2002年   36篇
  2001年   26篇
  2000年   32篇
  1999年   22篇
  1998年   23篇
  1997年   12篇
  1996年   20篇
  1995年   22篇
  1994年   24篇
  1993年   13篇
  1992年   14篇
  1991年   22篇
  1990年   24篇
  1989年   16篇
  1988年   11篇
  1987年   10篇
  1986年   6篇
  1985年   17篇
  1984年   16篇
  1983年   12篇
  1982年   10篇
  1981年   10篇
  1980年   11篇
  1979年   11篇
  1978年   8篇
  1976年   6篇
  1975年   7篇
  1973年   7篇
排序方式: 共有1764条查询结果,搜索用时 15 毫秒
61.
Based on the integrated consideration and engineering of both conjugated backbones and flexible side chains, solution‐processable polymeric semiconductors consisting of a diketopyrrolopyrrole (DPP) backbone and a finely modulated branching side chain (ε‐branched chain) are reported. The subtle change in the branching point from the backbone alters the π?π stacking and the lamellar distances between polymer backbones, which has a significant influence on the charge‐transport properties and in turn the performances of field‐effect transistors (FETs). In addition to their excellent electron mobilities (up to 2.25 cm2 V?1 s?1), ultra‐high hole mobilities (up to 12.25 cm2 V?1 s?1) with an on/off ratio (Ion/Ioff) of at least 106 are achieved in the FETs fabricated using the polymers. The developed polymers exhibit extraordinarily high electrical performance with both hole and electron mobilities superior to that of unipolar amorphous silicon.  相似文献   
62.
One‐pot protocol for the synthesis of novel class of triazole linked 2‐sugar and 2‐aryl substituted benzimidazoles has been developed. The rapid and simple method involves copper (I) catalyzed simultaneous formation of benzimidazole and triazole rings at room temperature and in high yield.  相似文献   
63.
Dilip K. Dutta 《合成通讯》2013,43(13):1903-1906
Azoxy compounds have been prepared in good yields by reductive coupling of aromatic nitro compounds with manganese and a catalytic amount of acetic acid in aqueous conditions.  相似文献   
64.
Herein we report the effect of additives (salts and organics) on the cloud point (CP) of nonionic surfactant Triton X‐114 (TX‐114) aqueous solutions. CP showed a concentration dependent variation in the absence of any added compound. Addition of quaternary ammonium (or phosphonium) bromides to 0.8 mM TX‐114 solutions increased the CP. It was found that long chain alcohols and amines decreased the CP of 0.8 mM TX‐114 +80 mM Bu4AmB aqueous system, while it either remained constant or increased in the presence of short chain additives. The effect of first group additives (long chain) can be explained by considering that these additives solubilize in interfacial region and assist in micellar growth. Short chain additives remain in aqueous phase and affect the micelle hydration by affecting the solvent. Pentylamine behaved differently than pentanol: pentylamine increased the CP (like short chain additives) while pentanol decreased the CP. In pentylamine, the hydrophilicity of NH2 group and its dissociation into NH3 + dominates over the hydrophobicity of its alkyl chain. Aliphatic hydrocarbons first decreased and then increased the CP. The overall behavior depended upon the chain length of the hydrocarbon. With decane, the CP decreasing region disappeared completely.  相似文献   
65.
Solvent extraction and supported liquid membrane transport studies on Y(III) and Sr(II) were carried out using both nitric as well as hydrochloric acid feed conditions using N,N,N′,N′-tetra-octyldiglycolamide (TODGA) in several organic diluents. The solvent extraction studies indicated extremely large separation factor (SF) values with chloroform, carbon tetrachloride, 1-decanol and hexone when 6 M HNO3 was used as the feed. On the other hand, the SF values were 1–2 orders of magnitude lower when the nitric acid concentration was 3 M HNO3. Significantly large SF values were also obtained from 6 M HCl when xylene, carbon tetrachloride, n-dodecane and hexone were used as the diluent. Though mass transfer was not very promising in the supported liquid membrane studies with most of the diluent systems, quantitative Y(III) transport was observed with 0.1 M TODGA in xylene with negligible Sr(II) transport suggesting possibility of obtaining carrier free 90Y. The purity of the radiotracer was checked by half-life method.  相似文献   
66.
Mesoporous nanoparticles composed of γ‐Al2O3 cores and α‐Fe2O3 shells were synthesized in aqueous medium. The surface charge of γ‐Al2O3 helps to form the core–shell nanocrystals. The core–shell structure and formation mechanism have been investigated by wide‐angle XRD, energy‐dispersive X‐ray spectroscopy, and elemental mapping by ultrahigh‐resolution (UHR) TEM and X‐ray photoelectron spectroscopy. The N2 adsorption–desorption isotherm of this core–shell materials, which is of type IV, is characteristic of a mesoporous material having a BET surface area of 385 m2 g?1 and an average pore size of about 3.2 nm. The SEM images revealed that the mesoporosity in this core–shell material is due to self‐aggregation of tiny spherical nanocrystals with sizes of about 15–20 nm. Diffuse‐reflectance UV/Vis spectra, elemental mapping by UHRTEM, and wide‐angle XRD patterns indicate that the materials are composed of aluminum oxide cores and iron oxide shells. These Al2O3@Fe2O3 core–shell nanoparticles act as a heterogeneous Fenton nanocatalyst in the presence of hydrogen peroxide, and show high catalytic efficiency for the one‐pot conversion of cyclohexanone to adipic acid in water. The heterogeneous nature of the catalyst was confirmed by a hot filtration test and analysis of the reaction mixture by atomic absorption spectroscopy. The kinetics of the reaction was monitored by gas chromatography and 1H NMR spectroscopy. The new core–shell catalyst remained in a separate solid phase, which could easily be removed from the reaction mixture by simple filtration and the catalyst reused efficiently.  相似文献   
67.
The complex series [Ru(pap)(Q)2]n ([ 1 ]n–[ 4 ]n; n=+2, +1, 0, ?1, ?2) contains four redox non‐innocent entities: one ruthenium ion, 2‐phenylazopyridine (pap), and two o‐iminoquinone moieties, Q=3,5‐di‐tert‐butyl‐N‐aryl‐1,2‐benzoquinonemonoimine (aryl=C6H5 ( 1+ ); m‐(Cl)2C6H3 ( 2+ ); m‐(OCH3)2C6H3 ( 3+ ); m‐(tBu)2C6H3 ( 4 +)). A crystal structure determination of the representative compound, [ 1 ]ClO4, established the crystallization of the ctt‐isomeric form, that is, cis and trans with respect to the mutual orientations of O and N donors of two Q ligands, and the coordinating azo N atom trans to the O donor of Q. The sensitive C? O (average: 1.299(3) Å), C? N (average: 1.346(4) Å) and intra‐ring C? C (meta; average: 1.373(4) Å) bond lengths of the coordinated iminoquinone moieties in corroboration with the N?N length (1.292(3) Å) of pap in 1 + establish [RuIII(pap0)(Q.?)2]+ as the most appropriate electronic structural form. The coupling of three spins from one low‐spin ruthenium(III) (t2g5) and two Q.? radicals in 1 +– 4 + gives a ground state with one unpaired electron on Q.?, as evident from g=1.995 radical‐type EPR signals for 1 +– 4 +. Accordingly, the DFT‐calculated Mulliken spin densities of 1 + (1.152 for two Q, Ru: ?0.179, pap: 0.031) confirm Q‐based spin. Complex ions 1 +– 4 + exhibit two near‐IR absorption bands at about λ=2000 and 920 nm in addition to intense multiple transitions covering the visible to UV regions; compounds [ 1 ]ClO4–[ 4 ]ClO4 undergo one oxidation and three separate reduction processes within ±2.0 V versus SCE. The crystal structure of the neutral (one‐electron reduced) state ( 2 ) was determined to show metal‐based reduction and an EPR signal at g=1.996. The electronic transitions of the complexes 1 n– 4 n (n=+2, +1, 0, ?1, ?2) in the UV, visible, and NIR regions, as determined by using spectroelectrochemistry, have been analyzed by TD‐DFT calculations and reveal significant low‐energy absorbance (λmax>1000 nm) for cations, anions, and neutral forms. The experimental studies in combination with DFT calculations suggest the dominant valence configurations of 1 n– 4 n in the accessible redox states to be [RuIII(pap0)(Q.?)(Q0)]2+ ( 1 2+– 4 2+)→[RuIII(pap0)(Q.?)2]+ ( 1 +– 4 +)→[RuII(pap0)(Q.?)2] ( 1 – 4 )→[RuII(pap.?)(Q.?)2]? ( 1 ?– 4 ?)→[RuIII(pap.?)(Q2?)2]2? ( 1 2?– 4 2?).  相似文献   
68.
ZnS nanoparticles implanted with 45 keV O5+ ion beam exhibited 83.6 % degradation of methyl blue in 2 h. This idea was utilized to fabricate nanocomposite system of ZnS and PMMA where ZnS nanoparticles were immobilized in PMMA film and irradiated with 45 keV O5+ ion beam at particle fluence of 2.5 × 1015, 1 × 1016 and 4 × 1016 particles/cm2. These irradiated batches of ZnS nanoparticle immobilized in PMMA batches revealed formation of porous structure characterized by scanning electron microscopy and these batches exhibited 54 % photocatalytic degradation of methyl blue in 80 min which was higher as compared to the pristine ZnS nanoparticles.  相似文献   
69.
Signal Amplification By Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) is investigated to achieve rapid hyperpolarization of 13C1 spins of [1-13C]pyruvate, using parahydrogen as the source of nuclear spin order. Pyruvate exchange with an iridium polarization transfer complex can be modulated via a sensitive interplay between temperature and co-ligation of DMSO and H2O. Order-unity 13C (>50 %) polarization of catalyst-bound [1-13C]pyruvate is achieved in less than 30 s by restricting the chemical exchange of [1-13C]pyruvate at lower temperatures. On the catalyst bound pyruvate, 39 % polarization is measured using a 1.4 T NMR spectrometer, and extrapolated to >50 % at the end of build-up in situ. The highest measured polarization of a 30-mM pyruvate sample, including free and bound pyruvate is 13 % when using 20 mM DMSO and 0.5 M water in CD3OD. Efficient 13C polarization is also enabled by favorable relaxation dynamics in sub-microtesla magnetic fields, as indicated by fast polarization buildup rates compared to the T1 spin-relaxation rates (e. g., ∼0.2 s−1 versus ∼0.1 s−1, respectively, for a 6 mM catalyst-[1-13C]pyruvate sample). Finally, the catalyst-bound hyperpolarized [1-13C]pyruvate can be released rapidly by cycling the temperature and/or by optimizing the amount of water, paving the way to future biomedical applications of hyperpolarized [1-13C]pyruvate produced via comparatively fast and simple SABRE-SHEATH-based approaches.  相似文献   
70.
We measured the angular dependence of the three recoil-proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily. Transverse polarizations are not well described, but suggest isovector dominance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号