首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32095篇
  免费   4511篇
  国内免费   3138篇
化学   17899篇
晶体学   309篇
力学   1530篇
综合类   109篇
数学   2912篇
物理学   9325篇
无线电   7660篇
  2024年   112篇
  2023年   788篇
  2022年   1025篇
  2021年   1301篇
  2020年   1232篇
  2019年   1173篇
  2018年   1007篇
  2017年   925篇
  2016年   1382篇
  2015年   1399篇
  2014年   1644篇
  2013年   2176篇
  2012年   2783篇
  2011年   2768篇
  2010年   1936篇
  2009年   1860篇
  2008年   2055篇
  2007年   1849篇
  2006年   1665篇
  2005年   1523篇
  2004年   1028篇
  2003年   835篇
  2002年   797篇
  2001年   578篇
  2000年   613篇
  1999年   731篇
  1998年   600篇
  1997年   560篇
  1996年   607篇
  1995年   489篇
  1994年   397篇
  1993年   321篇
  1992年   301篇
  1991年   250篇
  1990年   205篇
  1989年   160篇
  1988年   116篇
  1987年   122篇
  1986年   103篇
  1985年   92篇
  1984年   56篇
  1983年   46篇
  1982年   38篇
  1981年   22篇
  1980年   12篇
  1979年   10篇
  1978年   7篇
  1976年   9篇
  1975年   11篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
41.
Wang HY  Liu LD  Sun Y  Ma L  Li J 《Talanta》2000,52(2):201-209
Use of synchronous first-derivative fluorimetry for determination of gentamycin is described. Gentamycin reacts with acetylacetone and formaldehyde in pH 5.6 HOAc/NaOAc buffer solution to form N-gentamyl-2,6-dimethyl-3,5-diacethyl-1,4-dihydropyridine[I] which is a fluorescent substance. Spectra of [I] and the reagent blank can be separated with synchronous derivative fluorimetry, and gentamycin can be determined directly. The synchronous spectral peaks of [I] and the reagent blank are at 434 and 411 nm, respectively. The first-derivative peak of [I] is at 425 nm. Effects of pH, foreign ions, buffer system, and heating time on the determination of gentamycin have been examined. The linear regression equation of the calibration graph is C=0.0513H-0.0416, with a correlation coefficient of linear regression of 0.9978. C means total potency of gentamycin: U ml(-1); H means peak height in the linear regression equation calibration graph. The linear range for the determination of gentamycin is from 0.00 to 3.00 U ml(-1). Recovery is from 95.06 to 112.0%, R.S.D. of 3.8%. The results determined by the fluorimetric method agreed roughly with those by the microbiological method. The method is simple and has low detection limit.  相似文献   
42.
煤中有机硫形态结构和热解过程硫变迁特性的研究   总被引:10,自引:1,他引:10  
利用热解 质谱并结合固定床热解反应装置,对煤中有机硫的形态主其对加氢热解过程 变迁特性的影响,进行了较系统的研究。结果表明,煤中有机硫的形态结构在褐煤中主要以脂肪族、芳香族硫化物为主,而在 煤中则主要以各种不同芳构化程度的噻吩结构为主,初步表明煤中有机硫形态结构随煤变质程度的变迁呈较强的连续递变性。煤热解过程中硫在呼产物中的变迁和分布与煤中有机硫的形态结构特点密切相关。较高芳构化噻吩结构不完全的氧  相似文献   
43.
To support preclinical pharmacokinetic investigation of 1-[4-[2-(4-bromobenzene-sulfonaminoethyl)phenylsufonyl]-3-(trans-4-methylcyclohexyl)urea (G004), a rapid, sensitive and specific high-performance liquid chromatography–electrospray ionization mass spectrometry (LC–ESI-MS) method was developed and validated. Glibenclamide was employed as internal standard. After liquid–liquid extraction the analyte was analyzed on a Kromasil C18 column (150 × 2.0 mm i.d.) with a mobile phase consisted of acetonitrile–water (0.05% acetic acid), 30:70 (v/v). The flow rate was 0.2 mL min−1. Detection was performed on a quadrupole mass spectrometer using an electrospray ionization interface and the selected-ion monitoring (SIM) mode. The retention time was about 3.5 and 4.2 min for Glibenclamide and G004, respectively. The assay was linear over the concentration range of 2.0–500.0 ng mL−1. Extraction Recovery of G004 in rat plasma was more than 87%. The intra- and inter-assay precision was lower than 11.5% (CV). This validated method was successfully applied to the pharmacokinetics of G004 in rats.  相似文献   
44.
The high spin states of119Te, populated in110Pd(13C,4n) and110Pd(12C,3n) reactions, have been studied through -ray spectroscopy. The level scheme has been established upto a spin of 55/2. Three-quasiparticle states, based on g2 7/2h11/2 and g7/2d5/2h11/2 configurations, have been identified. The 35/2 and 39/2 states are suggested to be the fully aligned states constituted by five valence h11/2 3, g7/2, d5/2 quasiparticles.  相似文献   
45.
46.
47.
48.
49.
Photoredox catalysis is a green solution for organics transformation and CO2 conversion into valuable fuels, meeting the challenges of sustainable energy and environmental concerns. However, the regulation of single-atomic active sites in organic framework not only influences the photoredox performance, but also limits the understanding of the relationship for photocatalytic selective organic conversion with CO2 valorization into one reaction system. As a prototype, different single-atomic metal (M) sites (M2+ = Fe2+, Co2+, Ni2+, Cu2+, and Zn2+) in hydrogen-bonded organic frameworks (M-HOF) backbone with bridging structure of metal-nitrogen are constructed by a typical “two-in-one” strategy for superior photocatalytic C N coupling reactions integrated with CO2 valorization. Remarkably, Zn-HOF achieves 100% conversion of benzylamine oxidative coupling reactions, 91% selectivity of N-benzylidenebenzylamine and CO2 conversion in one photoredox cycle. From X-ray absorption fine structure analysis and density functional theory calculations, the superior photocatalytic performance is attributed to synergic effect of atomically dispersed metal sites and HOF host, decreasing the reaction energy barriers, enhancing CO2 adsorption and forming benzylcarbamic acid intermediate to promote the redox recycle. This work not only affords the rational design strategy of single-atom active sites in functional HOF, but also facilitates the fundamental insights upon the mechanism of versatile photoredox coupling reaction systems.  相似文献   
50.
Precise adjustment of the pore size, damage repair, and efficient cleaning is all challenges for the wider application of inorganic membranes. This study reports a simple strategy of combining dry-wet spinning and electrosynthesis to fabricate stainless-steel metal–organic framework composite membranes characterized by customizable pore sizes, targeted reparability, and high catalytic activity for membrane cleaning. The membrane pore size can be precisely customized in the range of 14–212 nm at nanoscale, and damaged membranes can be repaired by targeted treatment in 120 s. In addition, advanced oxidation processes can be used to quickly clean the membrane and achieve 98% flux recovery. The synergistic actions of the membrane matrix and the selective layer increase the adsorption energy of active sites to oxidant, shorten the electron transfer cycle, and enhance the overall catalytic performance. This study can provide a new direction for the development of advanced membranes for water purification and high-efficiency membrane cleaning methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号