首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32101篇
  免费   4513篇
  国内免费   3139篇
化学   17903篇
晶体学   309篇
力学   1530篇
综合类   109篇
数学   2912篇
物理学   9329篇
无线电   7661篇
  2024年   112篇
  2023年   788篇
  2022年   1026篇
  2021年   1302篇
  2020年   1233篇
  2019年   1173篇
  2018年   1008篇
  2017年   927篇
  2016年   1382篇
  2015年   1399篇
  2014年   1644篇
  2013年   2176篇
  2012年   2785篇
  2011年   2770篇
  2010年   1938篇
  2009年   1860篇
  2008年   2056篇
  2007年   1848篇
  2006年   1663篇
  2005年   1522篇
  2004年   1027篇
  2003年   834篇
  2002年   796篇
  2001年   578篇
  2000年   613篇
  1999年   730篇
  1998年   600篇
  1997年   560篇
  1996年   608篇
  1995年   489篇
  1994年   397篇
  1993年   322篇
  1992年   302篇
  1991年   251篇
  1990年   205篇
  1989年   160篇
  1988年   116篇
  1987年   122篇
  1986年   103篇
  1985年   92篇
  1984年   56篇
  1983年   46篇
  1982年   38篇
  1981年   22篇
  1980年   12篇
  1979年   10篇
  1978年   7篇
  1976年   9篇
  1975年   11篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
Cobalt phthalocyanine (CoPc) anchored on heterogeneous scaffold has drawn great attention as promising electrocatalyst for carbon dioxide reduction reaction (CO2RR), but the molecule/substrate interaction is still pending for clarification and optimization to maximize the reaction kinetics. Herein, a CO2RR catalyst is fabricated by affixing CoPc onto the Mg(OH)2 substrate primed with conductive carbon, demonstrating an ultra-low overpotential of 0.31 ± 0.03 V at 100 mA cm−2 and high faradaic efficiency of >95% at a wide current density range for CO production, as well as a heavy-duty operation at 100 mA cm−2 for more than 50 h in a membrane electrode assembly. Mechanistic investigations employing in situ Raman and attenuated total reflection surface-enhanced infrared absorption spectroscopy unravel that Mg(OH)2 plays a pivotal role to enhance the CO2RR kinetics by facilitating the first-step electron transfer to form anionic *CO2 intermediates. DFT calculations further elucidate that introducing Lewis acid sites help to polarize CO2 molecules absorbed at the metal centers of CoPc and consequently lower the activation barrier. This work signifies the tailoring of catalyst-support interface at molecular level for enhancing the turnover rate of CO2RR.  相似文献   
112.
Rechargeable aqueous zinc batteries are promising energy storage devices because of their low cost, high safety, and high energy density. However, their performance is plagued by the unsatisfied cyclability due to the dendrite growth and hydrogen evolution reaction (HER) at the Zn anode. Herein, it is demonstrated that the concentrated hybrid aqueous/non-aqueous ZnCl2 electrolytes constitute a peculiar chemical environment for not only the Zn-ions but also water molecules. The high concentration of chloride ions substitutes the H2O molecular in the solvation structure of Zn2+, while the acetonitrile further interacts with H2O to decrease its activity. The hybrid electrolytes both inhibit the dendrite formation and HER, enabling an ultrahigh average Coulombic efficiency of 99.9% in the Zn||Cu half-cell and a highly reversible Zn plating/stripping with a low overpotential of 21 mV. Using this hybrid electrolyte, the Zn||polytriphenylamine (PTPAn) full cell deliveres a high discharge capacity of 110 mAh g−1, a high power density of 9200 W kg−1 at 100 °C and maintains 85% of the capacity for over 6000 cycles at 10 °C. This study provides a deep understanding between the solvation structure and columbic efficiency of Zn anode, thus inspiring the development for stable Zn batteries.  相似文献   
113.
Bio-ink has gradually transited from ionic-crosslinking to photocrosslinking due to photocurable bio-hydrogel having good formability and biocompatibility. It is very important to understand and quantify the crosslinking process of photocurable hydrogels, otherwise, bioprinting cannot be standardized and scalable. However, there are few studies on hydrogel formation process and its photocrosslinking behavior which cannot be accurately predicted. Herein, the photoinitiated radical polymerized bio-hydrogels are taken as an example to establish the formation theory. Three typical crosslinking reactions are first distinguished. It is further proposed that not all double-bonds consumed during crosslinking contributeequally to polymerization. Then the concept of effective double-bond conversion (EDBC) is elicited. Deriving from EDBC, several important formation indices are defined. According to theory, it is predicted that slow crosslinking can improve the crosslinking degree. Furthermore, based on the slow crosslinking effect, a new strategy of projection-based 3D printing (PBP) is proposed, which significantly improved printing quality and efficiency. Overall, this work will fill the gap in hydrogel's formation theory, making it possible to accurately quantify the formation process.  相似文献   
114.
Branded with low cost and a high degree of safety, with an ambitious aim of substituting lithium-ion batteries in many fields, sodium-ion batteries have received fervid attention in recent years after being dormant for decades. Layered materials are a major focus of study owing to the extensive experience already gained in lithium-ion batteries, and the pursuit of a Mn-rich composition is critical to reduce the cost while retaining the performance. This review provides a timely update of the recent progress of Mn-rich layered materials for sodium-ion batteries based on the understandings of the phase forming principles, structure transformation upon cycling and charge compensation mechanisms and discusses potential ambiguities in the pursuit of high-performance materials.  相似文献   
115.
High-performance damping materials are significant toward reducing vibration and maintaining stability for industrial applications. Herein, a yolk–shell piezoelectric damping mechanism is reported, which can enhance mechanical energy dissipation and improve damping capability. With the addition of yolk–shell particles and carbon nanotube (CNT) conductive network, damping properties of various resin matrices are enhanced with the energy dissipation path of mechanical to electrical to heat energy. Particularly, the peak loss factor of epoxy composites reaches 1.91 and tan δ area increases by 25.72% at 20 °C. The results prove the general applicability of yolk–shell piezoelectric damping mechanism. Besides, the novel damping materials also exhibit excellent flexibility, stretchability, and resilience, offering a promising application toward damping coating, indicating broad scope of application in transportation and sophisticated electronics, etc.  相似文献   
116.
Due to the surface inhomogeneity of the solid supports, direct growth of uniform bimetallic nanoparticles (NPs) with controllable structure and size thereon is particularly challenging. Herein, a surface-confinement strategy is reported to directly prepare ultrafine bimetallic Pt M NPs (MFe, Cu, and Co) with structure of core-shell or intermetallic compounds on an N functionalized carbon support (NC). It is found that the N species of NC support can atomically disperse metal cations of precursors, which largely renders uniform nucleation and growth of bimetallic NPs and fine structure modulation of them. In another regard, metal transfer is confined to a narrow region on NC via N-mediation, hence greatly favoring localized particle growth and formation of ultrafine bimetallic NPs. Remarkably, the ultrafine 3.1 ± 0.7 nm intermetallic Pt3Fe NPs on NC displayed excellent catalytic activity and durability toward electrochemical hydrogen evolution reaction.  相似文献   
117.
Ferromagnetic materials with a strong spin-orbit coupling (SOC) have attracted much attention in recent years because of their exotic properties and potential applications in energy-efficient spintronics. However, such materials are scarce in nature. Here, a proximity-induced paramagnetic to ferromagnetic transition for the heavy transition metal oxide CaRuO3 in (001)-(LaMnO3/CaRuO3) superlattices is reported. Anomalous Hall effect is observed in the temperature range up to 180 K. Maximal anomalous Hall conductivity and anomalous Hall angle are as large as ∼15 Ω−1 cm−1 and ∼0.93%, respectively, by one to two orders of magnitude larger than those of the typical 3d ferromagnetic oxides such as La0.67Sr0.33MnO3. Density functional theory calculations indicate the existence of avoid band crossings in the electronic band structure of the ferromagnetic CRO layer, which enhances Berry curvature thus strong anomalous Hall effects. Further evidences from polarized neutron reflectometry show that the CaRuO3 layers are in a fully ferromagnetic state (∼0.8 μB/Ru), in sharp contrast to the proximity-induced canted antiferromagnetic state in 5d oxides SrIrO3 and CaIrO3 (∼0.1 μB/Ir). More than that, the magnetic anisotropy of the (001)-(LaMnO3/CaRuO3) superlattices is eightfold symmetric, showing potential applications in the technology of multistate data storage.  相似文献   
118.
Stretchable ultra-narrow (e.g., 10 µm in width) microelectrodes are crucial for the electrophysiological monitoring of single cells providing the fundamental understanding to the working mechanism of neuro network or other electrically functional cells. Current fabrication strategies either focus on the preparation of normal stretchable electrodes with hundreds of micrometers or millimeters in width by using inorganic conductive materials or develop conductive organic polymer gel for ultra-narrow electrodes which suffer from low stretchability and instability for long-term implantation, therefore, it is still highly desirable to explore bio-interfacial ultra-narrow stretchable inorganic electrodes. Herein, a hybrid strategy is reported to prepare ultra-narrow multi-channel stretchable microelectrodes without using photolithography or laser-assisting etching. A 10 µm × 10 µm monitoring window is fabricated with enhanced interfacial impedance by the special rough surface. The stretchability achieves to 120% for this 10 µm-width stretchable electrode. Supported by these superior properties, it is demonstrated that the stretchable microelectrodes can detect electrophysiological signals of single cells in vitro and collect electrophysiological signals more precisely in vivo. The reported strategy will open up the accessible preparation of the fine-size stretchable microelectrode. It will significantly improve the resolution of monitoring and stimulation of inorganic stretchable electrodes.  相似文献   
119.
K-metal batteries have become one of the promising candidates for the large-scale energy storage owing to the virtually inexhaustible and widely potassium resources. The uneven K+ deposition and dendrite growth on the anode causes the batteries prematurely failure to limit the further application. An integrated K-metal anode is constructed by cold-rolling K metal with a potassiphilic porous interconnected mediator. Based on the experimental results and theoretical calculations, it demonstrates that the potassiphilic porous interconnected mediator boosts the mass transportation of K-metal anode by the K affinity enhancement, which decreases the concentration polarization and makes a dendrite-free K-metal anode interface. The interconnected porous structure mitigates the internal stress generated during repetitive deposition/stripping, enabling minimized the generation of electrode collapse. As a result, a durable K-metal anode with excellent cycling ability of exceed 1, 000 h at 1 mA cm−2/1 mAh cm−2 and lower polarization voltage in carbonate electrolyte is obtained. This proposed integrated anode with fast K+ kinetics fabricated by a repeated cold rolling and folding process provides a new avenue for constructing a high-performance dendrites-free anode for K-metal batteries.  相似文献   
120.
AIN thin films were deposited on c-,a-and r-plane sapphire substrates by the magnetron sputtering technique.The in-fluence of high-temperature thermal annealing (HTTA) on the structural,optical properties as well as surface stoichiometry were comprehensively investigated.The significant narrowing of the (0002) diffraction peak to as low as 68 arcsec of AIN after HTTA implies a reduction of tilt component inside the AIN thin films,and consequently much-reduced dislocation densities.This is also supported by the appearance of E2(high) Raman peak and better Al-N stoichiometry after HTTA.Furthermore,the in-creased absorption edge after HTTA suggests a reduction of point defects acting as the absorption centers.It is concluded that HTTA is a universal post-treatment technique in improving the crystalline quality of sputtered AIN regardless of sapphire orienta-tion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号