首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   2篇
化学   3篇
力学   3篇
物理学   30篇
无线电   7篇
  2016年   1篇
  2012年   1篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   5篇
  2006年   6篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1966年   2篇
排序方式: 共有43条查询结果,搜索用时 3 毫秒
41.
The most common lithotripter, a Dornier HM-3, utilizes an underwater spark to generate an acoustic pulse and a rigid ellipsoidal reflector to focus the pulse on the kidney stone to be comminuted. The pulse measured in water with a PVDF membrane hydrophone at the external focus of the ellipsoid was a 1-microsecond positive-pressure spike followed by a 3-microsecond negative-pressure trough. When we replaced the rigid reflector in our experimental lithotripter with a pressure-release reflector, the pulse was a 1.6-microsecond trough followed by a 0.6-microsecond positive spike. The waveforms are nearly time inverses (i.e., their spikes and troughs are reversed). The frequency spectra, the maximum peak positive pressures P+ (42 MPa, rigid and 43 MPa, pressure-release), and the maximum peak negative pressures P- (-12 MPa and -14 MPa) are comparable. The maximum P- occurred 20 mm closer to the reflector than did the maximum P+, for both reflectors. However, the spatial maxima of the peak pressures (P+ and P-) produced by the pressure-release reflector were located 20 mm nearer to the reflector than those produced by the rigid reflector. Qualitative explanation of the waveforms and the location of pressure maxima as well as comparison to previous theoretical and experimental results is given. The alternate waveform produced by the pressure-release reflector may be a tool in determining the role of cavitation in lithotripsy because cavitation is highly sensitive to waveform.  相似文献   
42.
Because of its extensive utilization in clinical practice, and because the subjects examined are often fragile and sensitive to trauma, the safety of diagnostic ultrasound has always been of concern. Of the various mechanisms through which ultrasound could act in a manner deleterious to a patient, acoustic cavitation, should it occur, appears to possess significant potential for biological damage. This paper reviews several recent reports of progress by our two groups and demonstrates the conditions under which cavitation has been observed by microsecond pulses of ultrasound. Although these results give no indications that diagnostic ultrasound may pose a true risk to a patient, they do indicate that in vivo cavitation may occur under certain conditions.  相似文献   
43.
The dynamic behaviour of SonoVue microbubbles, a new generation ultrasound contrast agent, is investigated in real time with light scattering method. Highly diluted SonoVue microbubbles are injected into a diluted gel made of xanthan gum and water. The responses of individual SonoVue bubbles to driven ultrasound pulses are measured. Both linear and nonlinear bubble oscillations are observed and the results suggest that SonoVue microbubbles can generate strong nonlinear responses. By fitting the experimental data of individual bubble responses with Sarkar's model, the shell coating parameter of the bubbles and dilatational viscosity is estimated to be 7.0 nm-s-Pa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号