首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  国内免费   2篇
化学   3篇
数学   2篇
物理学   4篇
无线电   13篇
  2021年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1996年   2篇
排序方式: 共有22条查询结果,搜索用时 62 毫秒
21.
A new approach to sequence estimation is proposed and its performance is analyzed for a number of channels of practical interest. The proposed approach, termed the slowest descent method, comprises as a special case the zero-forcing equalizer for intersymbol interference channels and the decorrelator for the multiuser detection problem. The latter two methods quantize the unconstrained sequence that maximizes the likelihood function. The proposed method can be viewed as a generalization of these two methods in two ways. First, the unconstrained maximization is extended to nonquadratic log-likelihood functions; second, the decorrelator estimate can be “refined” by comparing its likelihood to a set of discrete-valued sequences along mutually orthogonal lines of the least decrease in the likelihood function. The gradient descent method for iterative computation of the line of least likelihood decrease (i.e., slowest likelihood descent) and its relationship to the expectation-maximization (EM) algorithm for unconstrained likelihood maximization is discussed. The slowest descent method is shown to provide a performance comparable to maximum-likelihood for a number of channels. These problems can be described by either quadratic or nonquadratic log-likelihood functions  相似文献   
22.
A merit factor based on the sequence autocorrelation function, whose minimization leads to the reduction in the Cramer-Rao lower bound (CRLB) for the variance of “two-sided” intersymbol interference (ISI) channel estimation is introduced. Pairs of binary pilot symbol sequences (a preamble and a postamble) for channel estimation are jointly designed to minimize this merit factor. Given that the number of channel taps is L and the length of a pilot symbol sequence is (N+L-1), where N⩾L, we distinguish between the case when N is even and the case when it is odd. For even N, we show that complementary sequences not only minimize the merit factor, but also the CRLB. For a subset of odd N we construct almost-complementary periodic sequence pairs that minimize the merit factor. The optimal pilot symbol block signaling requires alternating between two (in most cases) different binary sequences that form the merit-minimizing pair  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号