首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   7篇
化学   83篇
力学   1篇
数学   23篇
物理学   20篇
无线电   24篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   1篇
  2018年   3篇
  2017年   5篇
  2016年   7篇
  2015年   1篇
  2014年   6篇
  2013年   9篇
  2012年   8篇
  2011年   14篇
  2010年   2篇
  2009年   6篇
  2008年   10篇
  2007年   11篇
  2006年   16篇
  2005年   8篇
  2004年   8篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1956年   1篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
141.
We present an analysis of the structural, energetic and spectral features associated with the different hydrogen bonded networks found in the first few acetylene–water clusters AWn (n=1–4) from first principles calculations. Contrary to the predictions of an empirical interaction potential, acetylene is incorporated into a hydrogen bonded ring when it clusters with two or three water molecules. This structural pattern changes for n=4 with the formation of a water tetramer interacting with acetylene. This structural transition from n=3 to 4 is spectroscopically manifested by a qualitative change in the appearance of the infrared spectra of the corresponding global minima.  相似文献   
142.
 In this paper the effect of limestone, fly ash, slag and natural pozzolana on the cement hydration products is studied. Four composite cements containing limestone, natural pozzolana from the Milos Island, slag and fly ash have been produced by intergrinding clinker (85%), the above main constituent (15%) and gypsum. The grinding process was designed in order to produce cements of the same 28d compressive strength. The hydrated products, formed after 1–28 days, were studied by means of X-ray diffraction. Unhydrated calcium silicate compounds of clinker and hydration products such as C*H, C*S*H and ettringite are clearly observed. Although there is not significant differentiation among samples hydrated for the same period of time, modifications of calcium aluminate hydrates as well as sulfoaluminate hydrates, are indicated by the XRD patterns. In samples of limestone cement, monocarboaluminate is formed in the first 24 hours and is still present after 28 days.  相似文献   
143.
The use of salicylaldehyde oxime (H2salox) in iron(III) carboxylate chemistry has yielded two new hexanuclear compounds [Fe6(mu3-O)2(O2CPh)10(salox)2(L)2].xMeCN.yH2O [L = MeCONH2, x = 6, y = 0 (1); L = H2O, x = 2, y = 3 (2)]. Compound 1 crystallizes in the triclinic space group P with (at 25 degrees C) a = 13.210(8) A, b = 13.87(1) A, c = 17.04(1) A, alpha = 105.79(2) degrees , beta = 96.72(2) degrees , gamma = 116.69(2) degrees , V = 2578.17(2) A(3), and Z = 1. Compound 2 crystallizes in the monoclinic space group C2/c with (at 25 degrees C) a = 21.81(1) A, b = 17.93(1) A, c = 27.72(1) A, beta = 111.70(2) degrees , V = 10070(10) A(3), and Z = 4. Complexes 1 and 2 contain the [Fe6(mu3-O)2(mu2-OR)2]12+ core and can be considered as two [Fe3(mu3-O)] triangular subunits linked by two mu2-oximato O atoms of the salox2- ligands, which show the less common mu3:eta1:eta2:eta1 coordination mode. The benzoato ligands are coordinated through the usual syn,syn-mu2:eta1:eta1 mode. The terminal MeCONH2 ligand in 1 is the hydrolysis product of the acetonitrile solvent in the presence of the metal ions. M?ssbauer spectra from powdered samples of 2 give rise to two well-resolved doublets with an average isomer shift consistent with that of high-spin Fe(III) ions. The two doublets, at an approximate 1:2 ratio, are characterized by different quadrupole splittings and are assigned to the nonequivalent Fe(III) ions of the cluster. Magnetic measurements of 2 in the 2-300 K temperature range reveal antiferromagnetic interactions between the Fe(III) ions, stabilizing an S = 0 ground state. NMR relaxation data have been used to investigate the energy separation between the low-lying states, and the results are in agreement with the susceptibility data.  相似文献   
144.
145.
Highly crystalline, dense BaTiO3 nanoparticles in a size range from 30 to 360nm with a narrow size distribution (g = 1.2–1.4) were prepared at various synthesis temperatures using a salt-assisted spray pyrolysis (SASP) method without the need for post-annealing. The effect of synthesis temperature on particle size, crystallinity and surface morphology of the nanoparticles were characterized by X-ray diffraction and scanning/transmission electron microscopy. The nature of the crystalline structure was analyzed by Rietveld refinement and Raman spectroscopy. The particle size decreased with decreasing operation temperature. The crystal phase was transformed from tetragonal to cubic at a particles size of about 50nm at room temperature. SASP can be used to produce high weight fraction of tetragonal BaTiO3 nanoparticles down to 64nm in a single step.  相似文献   
146.
In this work, we propose an end‐to‐end retransmission framework for dynamically calculating efficient retransmission time‐out intervals in delay‐tolerant networks (DTNs) with scheduled connectivity. The proposed framework combines deterministic and statistical information about the network state to calculate worst‐case estimates about the expected round trip times. Such information includes connectivity schedules, convergence layer protocols specifics, communication link characteristics, and network statistics about the maximum expected packet error rates and storage congestion. We detail the implementation of the proposed framework within the end‐to‐end application data conditioning layer proposed for the DTN architecture, realized by the Delay‐Tolerant Payload Conditioning protocol, as part of the Interplanetary Overlay Network–DTN reference implementation, and evaluate its performance in a complex deep‐space emulation scenario in our DTN testbed. Our results show that our approach achieves great accuracy in round‐trip time estimations and, therefore, faster retransmissions of lost data, in comparison to the statically configured retransmission mechanism of the original Delay‐Tolerant Payload Conditioning protocol. As a result, in‐order data reception rate and storage requirements on the receiver side are significantly improved, at minimum or even zero extra cost in transmission overhead due to duplicate transmissions.  相似文献   
147.
Gas sensor arrays often lack discrimination power to different analytes and robustness to interferants, limiting their success outside of research laboratories. This is primarily due to the widely sensitive (thus weakly-selective) nature of the constituent sensors. Here, the effect of orthogonality on array accuracy and precision by selective sensor design is investigated. Therefore, arrays of (2–5) selective and non-selective sensors are formed by systematically altering array size and composition. Their performance is evaluated with 60 random combinations of ammonia, acetone and ethanol at ppb to low ppm concentrations. Best analyte predictions with high coefficients of determination (R2) of 0.96 for ammonia, 0.99 for acetone and 0.88 for ethanol are obtained with an array featuring high degree of orthogonality. This is achieved by using distinctly selective sensors (Si:MoO3 for ammonia and Si:WO3 for acetone together with Si:SnO2) that improve discrimination power and stability of the regression coefficients. On the other hand, arrays with collinear sensors (Pd:SnO2, Pt:SnO2 and Si:SnO2) hardly improve gas predictions having R2 of 0.01, 0.86 and 0.28 for ammonia, acetone and ethanol, respectively. Sometimes they even exhibited lower coefficient of determination than single sensors as a Si:MoO3 sensor alone predicts ammonia better with a R2 of 0.68.
Graphical abstract Conventional arrays (red) with weakly-selective sensors span a significantly smaller volume in the analyte space than arrays containing distinctly-selective sensors (orthogonal array, green). Orthogonal arrays feature better accuracy and precision than conventional arrays in mixtures of ammonia, acetone and ethanol.
  相似文献   
148.
The effect of solvent composition on particle formation during flame spray pyrolysis of inexpensive metal-nitrates has been investigated for alumina, iron oxide, cobalt oxide, zinc oxide and magnesium oxide. The as-prepared materials were characterized by electron microscopy, nitrogen adsorption, X-ray diffraction (XRD) and disc centrifugation (XDC). The influence of solvent parameters such as boiling point, combustion enthalpy and chemical reactivity on formation of either homogeneous nanoparticles by evaporation/nucleation/coagulation (gas-to-particle conversion) or large particles through precipitation and conversion within the sprayed droplets (droplet-to-particle conversion) is discussed. For Al(2)O(3), Fe(2)O(3), Co(3)O(4) and partly also MgO, the presence of a carboxylic acid in the FSP solution resulted in homogeneous nanoparticles. This is attributed to formation of volatile metal carboxylates in solution as evidenced by attenuated total reflectance spectroscopy (ATR). For ZnO and MgO rather homogeneous nanoparticles were formed regardless of solvent composition. For ZnO this is attributed to its relatively low dissociation temperature compared to other oxides. While for MgO this is traced to the high decomposition temperature of Mg(NO(3))(2) together with Mg(OH)(2)?MgO transformations. Cobalt oxide (Co(3)O(4)) nanoparticles made by FSP were not aggregated but rather loosely agglomerated as determined by the excellent agreement between XRD- and XDC-derived crystallite and particle sizes, respectively, pointing out the potential of FSP to make non-aggregated particles.  相似文献   
149.
The complexes between the host calix[4]arene (C4A) and various guest molecules such as NH(3), N(2), CH(4), and C(2)H(2) have been investigated via experimental and theoretical methods. The S(1)-S(0) electronic spectra of these guest-host complexes are observed by mass-selected resonant two-photon ionization (R2PI) and laser-induced fluorescence (LIF) spectroscopy. The IR spectra of the complexes formed in molecular beams are obtained by IR-UV double resonance (IR-UV DR) and IR photodissociation (IRPD) spectroscopy. The supramolecular structures of the complexes are investigated by electronic structure methods (density functional and second order perturbation theory). The current results for the various molecular guests are put in perspective with the previously reported ones for the C4A-rare gas (Rg) (Phys. Chem. Chem. Phys. 2007, 126, 141101) and C4A-H(2)O complexes (J. Phys. Chem. A, 2010, 114, 2967). The electronic spectra of the complexes of C4A with N(2), CH(4), and C(2)H(2) exhibit red-shifts of similar magnitudes with the ones observed for the C4A-Rg complexes, whereas the complexes of C4A with H(2)O and NH(3) show much larger red-shifts. Most of the IR-UV DR spectra of the complexes, except for C4A-C(2)H(2), show a broad hydrogen-bonded OH stretching band with a peak at ~3160 cm(-1). The analysis of the experimental results, in agreement with the ones resulting from the electronic structure calculations, suggest that C4A preferentially forms endo-complexes (guests inside the host calizarene cavity) with all the guest species reported in this study. We discuss the similarities and differences of the structures, binding energies, and the nature of the interaction between the C4A host and the various guest species.  相似文献   
150.
Multiparticle sintering is encountered in almost all high temperature processes for material synthesis (titania, silica, and nickel) and energy generation (e.g., fly ash formation) resulting in aggregates of primary particles (hard- or sinter-bonded agglomerates). This mechanism of particle growth is investigated quantitatively by mass and energy balances during viscous sintering of amorphous aerosol materials (e.g., SiO(2) and polymers) that typically have a distribution of sizes and complex morphology. This model is validated at limited cases of sintering between two (equally or unequally sized) particles, and chains of particles. The evolution of morphology, surface area and radii of gyration of multiparticle aggregates are elucidated for various sizes and initial fractal dimension. For each of these structures that had been generated by diffusion limited (DLA), cluster-cluster (DLCA), and ballistic particle-cluster agglomeration (BPCA) the surface area evolution is monitored and found to scale differently than that of the radius of gyration (moment of inertia). Expressions are proposed for the evolution of fractal dimension and the surface area of aggregates undergoing viscous sintering. These expressions are important in design of aerosol processes with population balance equations (PBE) and/or fluid dynamic simulations for material synthesis or minimization and even suppression of particle formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号