首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12708篇
  免费   663篇
  国内免费   67篇
化学   6400篇
晶体学   93篇
力学   279篇
数学   816篇
物理学   2190篇
无线电   3660篇
  2024年   17篇
  2023年   163篇
  2022年   193篇
  2021年   328篇
  2020年   259篇
  2019年   279篇
  2018年   247篇
  2017年   233篇
  2016年   434篇
  2015年   357篇
  2014年   476篇
  2013年   774篇
  2012年   860篇
  2011年   969篇
  2010年   591篇
  2009年   602篇
  2008年   808篇
  2007年   761篇
  2006年   691篇
  2005年   653篇
  2004年   565篇
  2003年   469篇
  2002年   456篇
  2001年   339篇
  2000年   295篇
  1999年   217篇
  1998年   150篇
  1997年   154篇
  1996年   162篇
  1995年   126篇
  1994年   108篇
  1993年   76篇
  1992年   89篇
  1991年   68篇
  1990年   65篇
  1989年   46篇
  1988年   47篇
  1987年   26篇
  1986年   17篇
  1985年   32篇
  1984年   23篇
  1983年   25篇
  1982年   24篇
  1981年   19篇
  1980年   13篇
  1979年   17篇
  1978年   16篇
  1977年   13篇
  1976年   15篇
  1975年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Poly(ethylene glycol)(PEG)‐based interpenetrating polymeric network (IPN) hydrogels were prepared for the application of enzyme immobilization. Poly(acrylamide)(PAAm) was chosen as the other network of IPN hydrogel and different concentration of PAAm networks were incorporated inside the PEG hydrogel to improve the mechanical strength and provide functional groups that covalently bind the enzyme. Formation of IPN hydrogels was confirmed by observing the weight per cent gain of hydrogel after incorporation of PAAm network and by attenuated total reflectance/Fourier transform infrared (ATR/FTIR) analysis. Synthesis of IPN hydrogels with higher PAAm content produced more crosslinked hydrogels with lower water content (WC), smaller Mc and mesh size, which resulted in enhanced mechanical properties compared to the PEG hydrogel. The IPN hydrogels exhibited tensile strength between 0.2 and 1.2 MPa while retaining high levels of hydration (70–81% water). For enzyme immobilization, glucose oxidase (GOX) was immobilized to PEG and IPN hydrogel beads. Enzyme activity studies revealed that although all the hydrogels initially had similar enzymatic activity, enzyme‐immobilizing PEG hydrogels lost most of the enzymatic activity within 2 days due to enzyme leaching while IPN hydrogels maintained a maximum 80% of the initial enzymatic activity over a week due to the covalent linkage between the enzyme and amine groups of PAAm. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
972.
Graft copolymers comprising poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) backbone and poly(styrene sulfonic acid) side chains, i.e. P(VDF‐co‐CTFE)‐g‐PSSA were synthesized using atom transfer radical polymerization (ATRP) for composite nanofiltration (NF) membranes. Direct initiation of the secondary chlorinated site of CTFE units facilitates grafting of PSSA, as revealed by FT‐IR spectroscopy. The successful “grafting from” method and the microphase‐separated structure of the graft copolymer were confirmed by transmission electron microscopy (TEM). Wide angle X‐ray scattering (WAXS) also showed the decrease in the crystallinity of P(VDF‐co‐CTFE) upon graft copolymerization. Composite NF membranes were prepared from P(VDF‐co‐CTFE)‐g‐PSSA as a top layer coated onto P(VDF‐co‐CTFE) ultrafiltration support membrane. Both the rejections and the flux of composite membranes increased with increasing PSSA concentration due to the increase in SO3H groups and membrane hydrophilicity, as supported by contact angle measurement. The rejections of NF membranes containing 47 wt% of PSSA were 83% for Na2SO4 and 28% for NaCl, and the solution flux were 18 and 32 L/m2 hr, respectively, at 0.3 MPa pressure. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
973.
Al(OH)3/PMMA nanocomposites were prepared by the emulsion polymerization of methyl methacrylate (MMA) in the presence of surface‐functionalized Al(OH)3 particles. Nanosized Al(OH)3 particles were previously functionalized with a silane coupling agent, 3‐(trimethoxysilyl) propyl methacrylate (γ‐MPS), which was confirmed by FT‐IR and XRF analysis. The average size of seed particles was around 70 nm, and the density of the coupling agent on the particles was calculated to be 8.9 µmol m?2. The emulsion polymerization was attempted at relatively high solid content of 40–46 wt%. The ratio of the seed particles to MMA had a strong influence on the stability of latex as well as the morphology of composites. Nanocomposites where several PMMA nodules were attached on the surface of Al(OH)3 core were produced with stable latex emulsion when the weight percents of Al(OH)3 to MMA were below 20. In the case of higher ratio of 30%, however, the latexes became unstable with an aggregation, and the product morphology was in the shape of large composite. Thermogravimetric analysis showed an improved thermal stability of PMMA composites with the incorporation of Al(OH)3 nanoparticles. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
974.
975.
Herein, we describe the molecular electronic structure, optical, and charge‐transport properties of anthracene derivatives computationally using density functional theory to understand the factors responsible for the improved efficiency and stability of organic light‐emitting diodes (OLEDs) with triphenylamine (TPA)‐substituted anthracene derivatives. The high performance of OLEDs with TPA‐substituted anthracene is revealed to derive from three original features in comparison with aryl‐substituted anthracene derivatives: 1) the HOMO and LUMO are localized separately on TPA and anthracene moieties, respectively, which leads to better stability of the OLEDs due to the more stable cation of TPA under a hole majority‐carrier environment; 2) the more balanceable hole and electron transport together with the easier hole injection leads to a larger rate of hole–electron recombination, which corresponds to the higher electroluminescence efficiency; and 3) the increasing reorganization energy for both hole and electron transport and the higher HOMO energy level provide a stable potential well for hole trapping, and then trapped holes induce a built‐in electric field to prompt the balance of charge‐carrier injection.  相似文献   
976.
In this study, nanocomposites of poly(ethylene-co-vinyl acetate) with two kinds of organically modified montmorillonite (OMMT) were prepared by melt intercalation. Their structures and mechanical properties were characterized by X-ray diffraction (XRD) and tensile test respectively. Especially, foaming of these nanocomposites mixed with chemical blowing agent was carried out through compression molding. Influences of OMMT on foaming ratio and mechanical properties were investigated by density test, tensile test and tear test. Results revealed that both kinds of OMMT with proper content increased tensile strength and Young's modulus of nanocomposites without a compromise of elongation at break. For foaming, OMMTs apparently improved foaming ratio and in particular, one of them can improve tear strength, tensile strength, Young's modulus and elongation although the density was decreased.  相似文献   
977.
Substitution of the pillaring ligand in the homochiral open-framework [Ni(2)(L-asp)(2)(bipy)] by extended bipy-type ligands leads to a family of layer-structured, homochiral metal-organic frameworks. The 1D channel topology can be modified by the nature of the organic linker, with shape, cross-section and the chemical functionality tuneable. In addition, the volume of these channels can be increased by up to 36 % compared to the parent [Ni(2)(L-asp)(2)(bipy)]. The linker 1,4-dipyridylbenzene (3rbp) gives access to a new layered homochiral framework [Ni(2)(L-asp)(2)(3rbp)] with channels of a different shape. In specific cases, non-porous analogues with the linker also present as a guest can be activated to give porous materials after sublimation. Their CO(2) uptake shows an increase of up to 30 % with respect to the parent [Ni(2)(L-asp)(2)(bipy)] framework.  相似文献   
978.
The purpose of this study was to investigate the expression of IL-16 in the rheumatoid synovium and the role of inflammatory cytokines and Toll-like receptor (TLR) ligands in IL-16 production by fibroblast-like synoviocytes (FLS) of rheumatoid arthritis (RA) patients. Immunohistochemical staining was performed with a monoclonal antibody to IL-16 in synovial tissues from patients with RA and likewise in patients with osteoarthritis (OA). FLS were isolated from RA synovial tissues and stimulated with IL-15, IL-1beta, IFN-gamma, and IL-17. The IL-16 mRNA level was assessed by semiquantitative RT-PCR and real time (RT) PCR and a comparison was made between IL-16 mRNA levels produced by RA-FLS and OA-FLS. Production of IL-16 was identified by a western blot assay, and IL-16 production after stimulation by specific ligands of TLR2 and TLR4 was assessed by RT-PCR. While immunohistochemical staining demonstrated strong expression of IL-16 mRNA in synovial tissues from patients with RA, similar findings were not present in the OA group. Moreover, mRNA expression of IL-16 by RA-FLS increased after treatment with IL-17 but not with IL-15, IL-1beta, and IFN-gamma. Specifically, IL-17 increased IL-16 mRNA level by RA-FLS and peripheral blood mononuclear cells in a dose-dependent manner. However, IL-17 did not stimulate IL-16 production in OA-FLS. Peptidoglycan, a selective TLR2 ligand, also increased production of IL-16 by RA-FLS dose- dependently, whereas LPS, a selective TLR4 ligand, had no such stimulatory effect. The results from our data demonstrate that IL-17 and TLR2 ligands stimulate the production of IL-16 by RA-FLS.  相似文献   
979.
Two new melampolide-type sesquiterpene lactones, 8beta-epoxyangeloyloxy-9alpha-ethoxy-14-oxo-acanthospermolide (1) and 8beta-angeloyloxy-9alpha-ethoxy-14-oxo-acanthospermolide (2), were isolated from the leaves of yacon [Smallanthus sonchifolia (POEPP. et ENDL.) H. Robinson] along with eleven known melampolides, allo-schkuhriolide (3), enhydrin (4), polymatin A (5), fluctuanin (6), 8beta-angeloyloxy-9alpha-acetoxy-14-oxo-acanthospermolide (7), 8beta-angeloyloxy-14-oxo-acanthospermolide (8), 8beta-methacryloyloxymelampolid-14-oic acid methyl ester (9), uvedalin (10), polymatin B (11), 8beta-tigloyloxymelampolid-14-oic acid methyl ester (12), and sonchifolin (13). Their structures were established on the basis of spectroscopic evidence including 1D- and 2D-NMR experiments. All isolates were evaluated for inhibition of LPS-induced nitric oxide production in murine macrophage RAW 264.7 cells.  相似文献   
980.
You Y  Seo J  Kim SH  Kim KS  Ahn TK  Kim D  Park SY 《Inorganic chemistry》2008,47(5):1476-1487
We disclose a controlled phosphorescence color tuning in a series of cyclometalated heteroleptic IrIII complexes (IrIII bis(2-(2,4-difluorophenyl)pyridinato- C,N (2'))(LX)) containing chromophoric 2-(2-hydroxyphenyl)oxazole-derivative ancillary ligands (LX). From a cyclometalated chloride-bridged IrIII dimer, three highly emissive cyclometalated heteroleptic IrIII complexes were obtained in good yields, each with a different conjugative plane in the chromophoric ancillary ligand (i.e., 2-(2-hydroxyphenyl)-4-methyloxazole, 2-(2-hydroxyphenyl)-6-methylbenzoxazole, and 2-(2-hydroxyphenyl)naphthoxazole). The three IrIII complexes showed highly efficient greenish blue (500 nm), green (525 nm), and yellow (552 nm) phosphorescence, respectively; a regular ca. 0.11 eV bathochromic shift was observed for each additional phenyl ring fused to the oxazole ring in the ancillary ligand. From the absorption, electrochemical measurements, static and transient photoluminescence (PL), and time-dependent density functional theory (TD-DFT) calculations, it can be concluded that the IrIII complexes have a single emission center with dual excitation paths. Finally, this characteristic energy-harvesting phosphorescence was further demonstrated in electrophosphorescence devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号