首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   1篇
化学   60篇
数学   1篇
物理学   4篇
无线电   8篇
  2022年   4篇
  2021年   3篇
  2020年   5篇
  2019年   7篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   1篇
  2014年   4篇
  2013年   9篇
  2011年   7篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2005年   6篇
  2004年   1篇
  2003年   5篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1994年   1篇
  1993年   1篇
  1977年   1篇
排序方式: 共有73条查询结果,搜索用时 0 毫秒
71.
The reactions of NO and Br radicals with 5‐hydroxyindole (HIn), 5‐hydroxytryptophol (HTpl), 5‐hydroxytryptophan (HTpn) and 5‐hydroxytryptamine (HTpe) were studied using pulse radiolysis. The rate constants for their reaction with NO radical were found to vary from 105 to 107 dm3 mol?1 s?1 in the pH range 5–9 but a higher value (k = 1.4 ± 0.01 × 108 dm3 mol?1 s?1) was noticed in HTpe at pH 9. The gradual increase in reactivity with pH is due to the decrease in the reduction potentials of indoloxyl radicals with E = 0.55 V at pH 9. In contrast, the rate constants with Br radical were found to be diffusion controlled and remained unaffected by the pH. The transient spectra measured are attributed to the indoloxyl radical formed on oxidation with λmax at 420 nm. The indoloxyl radicals further react with the parent hydroxy indole derivative forming the radical adduct and their decay was found to be pH dependent in derivatives containing an amino group. At pH 5, no decay of the radical adducts was seen in all derivatives up to 5 ms whereas those with the amino group decayed faster at pH 9. The total yields of the oxygen centred and carbon centred radicals formed in the reaction of NO radical with hydroxy indoles were found to be nearly equal to G(NO). Our results suggest that NO radical is inefficient in oxidizing hydroxy indoles under physiological conditions preventing the formation of toxic dimers of indole derivatives. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
72.
73.
Pulse radiolysis coupled with absorption detection has been employed to study one-electron oxidation of selenomethionine (SeM), selenocystine (SeCys), methyl selenocysteine (MeSeCys), and selenourea (SeU) in aqueous solutions. Hydroxyl radicals (*OH) in the pH range from 1 to 7 and specific one-electron oxidants Cl2*- (pH 1) and Br2*- (pH 7) have been used to carry out the oxidation reactions. The bimolecular rate constants for these reactions were reported to be in the range of 2 x 10(9) to 10 x 10(9) M(-1) s(-1). Reactions of oxidizing radicals with all these compounds produced selenium-centered radical cations. The structure and stability of the radical cation were found to depend mainly on the substituent and pH. SeM, at pH 7, produced a monomer radical cation (lambdamax approximately 380 nm), while at pH 1, a dimer radical cation was formed by the interaction between oxidized and parent SeM (lambdamax approximately 480 nm). Similarly, SeCys, at pH 7, on one-electron oxidation, produced a monomer radical cation (lambdamax approximately 460 nm), while at pH 1, the reaction produced a transient species with (lambdamax approximately 560 nm), which is also a monomer radical cation. MeSeCys on one-electron oxidation in the pH range from 1 to 7 produced monomer radical cations (lambdamax approximately 350 nm), while at pH < 0, the reaction produced dimer radical cations (lambdamax approximately 460 nm). SeU at all the pH ranges produced dimer radical cations (lambdamax approximately 410 nm). The association constants of the dimer radical cations of SeM, MeSeCys, and SeU were determined by following absorption changes at lambdamax as a function of concentration. From these studies it is concluded that formation of monomer and dimer radical cations mainly depends on the substitution, pH, and the heteroatoms like N and O. The availability of a lone pair on an N or O atom at the beta or gamma position results in monomer radical cations having intramolecular stabilization. When such a lone pair is not available, the monomer radical cation is converted into a dimer radical cation which acquires intermolecular stabilization by the other selenium atom. The pH dependency confirms the role of protonation on stabilization. The oxidation chemistry of these selenium compounds is compared with that of their sulfur analogues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号