首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21021篇
  免费   2981篇
  国内免费   2173篇
化学   11766篇
晶体学   195篇
力学   846篇
综合类   74篇
数学   1548篇
物理学   5781篇
无线电   5965篇
  2024年   106篇
  2023年   543篇
  2022年   666篇
  2021年   826篇
  2020年   797篇
  2019年   793篇
  2018年   710篇
  2017年   662篇
  2016年   905篇
  2015年   974篇
  2014年   1217篇
  2013年   1505篇
  2012年   1718篇
  2011年   1822篇
  2010年   1313篇
  2009年   1214篇
  2008年   1393篇
  2007年   1276篇
  2006年   1132篇
  2005年   979篇
  2004年   716篇
  2003年   634篇
  2002年   575篇
  2001年   486篇
  2000年   440篇
  1999年   385篇
  1998年   327篇
  1997年   294篇
  1996年   251篇
  1995年   224篇
  1994年   255篇
  1993年   178篇
  1992年   160篇
  1991年   130篇
  1990年   116篇
  1989年   95篇
  1988年   64篇
  1987年   43篇
  1986年   45篇
  1985年   38篇
  1984年   30篇
  1983年   18篇
  1982年   20篇
  1981年   9篇
  1980年   18篇
  1979年   10篇
  1976年   10篇
  1975年   7篇
  1974年   8篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
31.
In this work, a combination of complementary metal-oxide semiconductor (CMOS) microchip system with capillary array electrophoresis (CAE) is demonstrated as a system for optimizing conditions for enzymatic reaction. Dimethylacridinone (DDAO)-phosphate substrate and alkaline phosphatase conjugate were selected for the enzymatic reaction, which was applicable to the enzyme-linked immunosorbent assay (ELISA) technique. Laser-induced fluorometry with a miniature semiconductor laser was used to detect the enzymatic products. The speed of the enzymatic reaction between the DDAO-phosphate and the alkaline phosphatase conjugate was investigated as a function of reaction time. The microchip-CAE detection system could determine the pH condition and the concentration of enzyme that are suitable for rapid and low-cost analysis. This result shows the feasibility of using the microchip-CAE system for application to miniaturized screening systems.  相似文献   
32.
To investigate the functional role of KAI1/CD82, a metastasis suppressor for human prostate cancer, in the regulation of homotypic cell adhesion, we transfected KAI1 cDNA into DU 145 human prostate cancer cells and established stable transfectant clones with high KAI1/CD82 expression. The KAI1 transfectant cells exhibited significantly increased homotypic cell aggregation in comparison with the control transfectant cells. This aggregation of the KAI1 transfectants was further enhanced upon exposure to anti-CD82 antibody, suggesting that KAI1/CD82 may be involved in the intracellular signaling for the cell adhesion. Among several signal pathway inhibitors tested, PP1, an inhibitor of Src family kinases, significantly suppressed homotypic aggregation of the KAI1 transfectant cells. Ligation of KAI1/CD82 with anti-CD82 antibody increased endogenous Src kinase activity of the KAI1 transfectant cells. When different types of src expression constructs were retransfected into the KAI1-transfected DU 145 cells, kinase-negative mutant src transfectant cells exhibited much lower homotypic aggregation than the mock cells transfected with an empty vector. Moreover, homotypic aggregation of the mutant src transfectant cells was not enhanced by KAI1/CD82 ligation with anti- CD82 antibody. These results suggest that Src mediates the intracellular signaling pathway of KAI1/CD82 for the induction of homotypic adhesion of human prostate cancer cells.  相似文献   
33.
Summary We introduce a new Skorohod topology for functions of several variables. Since ann-variable function may be viewed as a one-variable function with values in the set of (n–1)-variable functions, this topology is defined by induction from the classical Skorohod topology for one-variable functions. This allows us to define the notion of completen-parameter symmetric Markov processes: Such processes are, for any 1pn, rawp-parameter Markov processes (in the sense of our previous paper [17]) with values in the space of (n–p)-variable functions. We prove, for these processes and their Bochner subordinates, a maximal inequality which implies the continuity of additive functionals associated with finite energy measures. We finally present several important examples.  相似文献   
34.
35.
36.
Photoredox catalysis is a green solution for organics transformation and CO2 conversion into valuable fuels, meeting the challenges of sustainable energy and environmental concerns. However, the regulation of single-atomic active sites in organic framework not only influences the photoredox performance, but also limits the understanding of the relationship for photocatalytic selective organic conversion with CO2 valorization into one reaction system. As a prototype, different single-atomic metal (M) sites (M2+ = Fe2+, Co2+, Ni2+, Cu2+, and Zn2+) in hydrogen-bonded organic frameworks (M-HOF) backbone with bridging structure of metal-nitrogen are constructed by a typical “two-in-one” strategy for superior photocatalytic C N coupling reactions integrated with CO2 valorization. Remarkably, Zn-HOF achieves 100% conversion of benzylamine oxidative coupling reactions, 91% selectivity of N-benzylidenebenzylamine and CO2 conversion in one photoredox cycle. From X-ray absorption fine structure analysis and density functional theory calculations, the superior photocatalytic performance is attributed to synergic effect of atomically dispersed metal sites and HOF host, decreasing the reaction energy barriers, enhancing CO2 adsorption and forming benzylcarbamic acid intermediate to promote the redox recycle. This work not only affords the rational design strategy of single-atom active sites in functional HOF, but also facilitates the fundamental insights upon the mechanism of versatile photoredox coupling reaction systems.  相似文献   
37.
Metal nanoclusters (MNCs) are compositionally well-defined and also structurally precise materials with unique molecule-like properties and discrete electronic energy levels. Atomically precise ligand-protected Cu nanoclusters (LP-CuNCs) are one category of typical MNCs that usually demonstrate unique geometric and electronic structures to serve as electrocatalysts. However, the synthesis, application, as well as structure-performance relationship of LP-CuNCs are not adequately studied. Significantly, the ligands are essential to the geometric structure, crystal structure, size, and electronic structure of LP-CuNCs, which determine their physiochemical properties and applications. In this review, significant progress in the ligand design of LP-CuNCs, and their application in electrocatalytic reactions is introduced. The general basics of ligand-protected MNCs (LP-MNCs) are first introduced and the functions of ligands are emphasized. Subsequently, a series of different ligands for LP-CuNCs including thiolates, phosphines, alkynyl, polymers, and biomolecules are highlighted. Thereafter, their applications in different electrocatalytic reactions are discussed. It is believed that this review will not only inspire the design and synthesis of novel LP-CuNCs, but also contribute to the extension of their applications in electrocatalytic reactions and the establishment of accurate structure-performance relationships.  相似文献   
38.
Mobile Networks and Applications - In order to improve the ability of quantitative evaluation of e-commerce advertising click rate, a model of e-commerce advertising click rate evaluation based on...  相似文献   
39.
40.
The complexation of lanthanide(III) cations with 1,2-propanediaminetetraacetate (1,2-PDTA) in aqueous solution has been investigated by 10Na, 35Cl, 2H and 11O NMR shift measurements. It has been shown that the contact shifts are dominant for 17O, 16Cl and 2H (only for the heavier lanthanide series) and the pseudocontact shifts are dominant for 25Na. It is suggested that the 1,2-PDTA ligand is bound pentadentately via the two nitrogens and the three carboxylates for the lighter lanthanide complexes, hexdentately via the two nitrogens and the four carboxylates for the heavier ones. The numbers of the water coordinated were determined. The small amount of chloride anion in inner coordination sphere was observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号