首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   2篇
化学   25篇
力学   4篇
数学   9篇
物理学   9篇
无线电   1篇
  2023年   3篇
  2022年   3篇
  2021年   1篇
  2020年   3篇
  2019年   7篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2002年   2篇
  2000年   2篇
  1997年   1篇
  1995年   1篇
  1989年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
31.
A new solution for dilaton-Maxwell gravity   总被引:2,自引:0,他引:2  
An interesting static spherically symmetric solution corresponding to Einstein-Maxwell gravity coupled to a dilaton field with negative kinetic term has been obtained. This solution is characterized by the set of two arbitrary parameters, the physical mass 0 and electric chargeQ. It has two horizons on which the metric, scalar curvature and both dilaton and electromagnetic fields are regular. Another feature of this solution is that the physical mass is bounded by the electric charge as 0Q¦ (unlike the Reisner-Nordström solution for which 0>-¦Q¦). The structure of the scalar curvature has been analyzed.On leave from: Bogolyubov Institute for Theoretical Microphysics, Moscow State University, 119899 Moscow, Russia  相似文献   
32.
33.
Identification and confirmation of bioactive small‐molecule targets is a crucial, often decisive step both in academic and pharmaceutical research. Through the development and availability of several new experimental techniques, target identification is, in principle, feasible, and the number of successful examples steadily grows. However, a generic methodology that can successfully be applied in the majority of the cases has not yet been established. Herein we summarize current methods for target identification of small molecules, primarily for a chemistry audience but also the biological community, for example, the chemist or biologist attempting to identify the target of a given bioactive compound. We describe the most frequently employed experimental approaches for target identification and provide several representative examples illustrating the state‐of‐the‐art. Among the techniques currently available, protein affinity isolation using suitable small‐molecule probes (pulldown) and subsequent mass spectrometric analysis of the isolated proteins appears to be most powerful and most frequently applied. To provide guidance for rapid entry into the field and based on our own experience we propose a typical workflow for target identification, which centers on the application of chemical proteomics as the key step to generate hypotheses for potential target proteins.  相似文献   
34.
    
We present a new decentralized classification system based on a distributed architecture. This system consists of distributed nodes, each possessing their own datasets and computing modules, along with a centralized server, which provides probes to classification and aggregates the responses of nodes for a final decision. Each node, with access to its own training dataset of a given class, is trained based on an auto-encoder system consisting of a fixed data-independent encoder, a pre-trained quantizer and a class-dependent decoder. Hence, these auto-encoders are highly dependent on the class probability distribution for which the reconstruction distortion is minimized. Alternatively, when an encoding–quantizing–decoding node observes data from different distributions, unseen at training, there is a mismatch, and such a decoding is not optimal, leading to a significant increase of the reconstruction distortion. The final classification is performed at the centralized classifier that votes for the class with the minimum reconstruction distortion. In addition to the system applicability for applications facing big-data communication problems and or requiring private classification, the above distributed scheme creates a theoretical bridge to the information bottleneck principle. The proposed system demonstrates a very promising performance on basic datasets such as MNIST and FasionMNIST.  相似文献   
35.
    
Reported is the identification of the furo[3,2‐b]pyridine core as a novel scaffold for potent and highly selective inhibitors of cdc‐like kinases (CLKs) and efficient modulators of the Hedgehog signaling pathway. Initially, a diverse target compound set was prepared by synthetic sequences based on chemoselective metal‐mediated couplings, including assembly of the furo[3,2‐b]pyridine scaffold by copper‐mediated oxidative cyclization. Optimization of the subseries containing 3,5‐disubstituted furo[3,2‐b]pyridines afforded potent, cell‐active, and highly selective inhibitors of CLKs. Profiling of the kinase‐inactive subset of 3,5,7‐trisubstituted furo[3,2‐b]pyridines revealed sub‐micromolar modulators of the Hedgehog pathway.  相似文献   
36.
    
Cell‐based screening is a powerful approach to identify novel chemical modulators and biological components of relevant biological processes. The canonical Wnt pathway is essential for normal embryonic development and tissue homeostasis, and its deregulation plays a crucial role in carcinogenesis. Therefore, the identification of new pathway members and regulators is of significant interest. By means of a cell‐based assay monitoring Wnt signaling we identified the pyrrolocoumarin Pyrcoumin as inhibitor of canonical Wnt signaling. Target identification and validation revealed that Pyrcoumin is a competitive inhibitor of dCTP pyrophosphatase 1 (dCTPP1). We demonstrate a yet unknown interaction of dCTPP1 with ubiquitin carboxyl‐terminal hydrolase (USP7) that is counteracted by dCTPP1 inhibitors. These findings indicate that dCTPP1 plays a role in regulation of Wnt/β‐catenin signaling most likely through a direct interaction with USP7.  相似文献   
37.
The asymmetric buckling of a shallow initially curved stress-free micro beam subjected to distributed nonlinear deflection-dependent electrostatic force is studied. In order to highlight the symmetry breaking phenomenon and the approach to its analysis, the subsidiary simplified problem of a curved beam attached to a linearly elastic foundation, and subjected to uniformly distributed “mechanical” load, which is independent of deflections, is addressed first. The analysis is based on a two degrees of freedom reduced order (RO) model resulting from the Galerkin decomposition with linear undamped eigenmodes of a straight beam used as the base functions. Simple approximate expressions are derived defining the geometric parameters of beams for which an asymmetric response bifurcates from the symmetric one. The necessary criterion establishes the conditions for the appearance of bifurcation points on the unstable branch of the symmetric limit point buckling curve; the sufficient criterion assures a realistic asymmetric buckling bifurcating from the stable branches of the curve. It is shown that while the symmetry breaking conditions are affected by the nonlinearity of the electrostatic force, its influence is less pronounced than in the case of the symmetric snap-through criterion. A comparison between the RO model results and those obtained by direct numerical analysis shows good agreement between the two and indicates that the obtained criteria can be used to predict non-symmetric buckling in electrostatically actuated bistable micro beams.  相似文献   
38.
    
Pyrazolones represent an important structural motif in active pharmaceutical ingredients. Their asymmetric synthesis is thus widely studied. Still, a generally highly enantio- and diastereoselective 1,4-addition to nitroolefins providing products with adjacent stereocenters is elusive. In this article, a new polyfunctional CuII-1,2,3-triazolium-aryloxide catalyst is presented which enables this reaction type with high stereocontrol. DFT studies revealed that the triazolium stabilizes the transition state by hydrogen bonding between C(5)−H and the nitroolefin and verify a cooperative mode of activation. Moreover, they show that the catalyst adopts a rigid chiral cage/pore structure by intramolecular hydrogen bonding, by which stereocontrol is achieved. Control catalyst systems confirm the crucial role of the triazolium, aryloxide and CuII, requiring a sophisticated structural orchestration for high efficiency. The addition products were used to form pyrazolidinones by chemoselective C=N reduction. These heterocycles are shown to be valuable precursors toward β,γ’-diaminoamides by chemoselective nitro and N−N bond reductions. Morphological profiling using the Cell painting assay identified biological activities for the pyrazolidinones and suggest modulation of DNA synthesis as a potential mode of action. One product showed biological similarity to Camptothecin, a lead structure for cancer therapy.  相似文献   
39.
In intensity-modulated radiotherapy (IMRT), a treatment is designed to deliver high radiation doses to tumors, while avoiding the healthy tissue. Optimization-based treatment planning often produces sharp dose gradients between tumors and healthy tissue. Random shifts during treatment can cause significant differences between the dose in the ??optimized?? plan and the actual dose delivered to a patient. An IMRT treatment plan is delivered as a series of small daily dosages, or fractions, over a period of time (typically 35 days). It has recently become technically possible to measure variations in patient setup and the delivered doses after each fraction. We develop an optimization framework, which exploits the dynamic nature of radiotherapy and information gathering by adapting the treatment plan in response to temporal variations measured during the treatment course of a individual patient. The resulting (suboptimal) control policies, which re-optimize before each fraction, include two approximate dynamic programming schemes: certainty equivalent control (CEC) and open-loop feedback control (OLFC). Computational experiments show that resulting individualized adaptive radiotherapy plans promise to provide a considerable improvement compared to non-adaptive treatment plans, while remaining computationally feasible to implement.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号