首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   397篇
  免费   26篇
  国内免费   5篇
化学   237篇
晶体学   2篇
力学   17篇
数学   71篇
物理学   63篇
无线电   38篇
  2023年   7篇
  2022年   7篇
  2021年   20篇
  2020年   26篇
  2019年   18篇
  2018年   18篇
  2017年   15篇
  2016年   38篇
  2015年   22篇
  2014年   26篇
  2013年   42篇
  2012年   29篇
  2011年   30篇
  2010年   19篇
  2009年   16篇
  2008年   12篇
  2007年   21篇
  2006年   11篇
  2005年   7篇
  2004年   7篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   4篇
  1995年   1篇
  1991年   2篇
  1990年   2篇
  1987年   1篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1979年   5篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有428条查询结果,搜索用时 15 毫秒
231.
The potential applications of nanoplates in energy storage, chemical and biological sensors, solar cells, field emission, and transporting of nanocars have been attracted the attentions of the nanotechnology community to them during recent years. Herein, the later application of nanoplates from nonlocal elastodynamic point of view is of interest. To this end, dynamic response of a nanoplate subjected to a moving nanoparticle is examined within the context of nonlocal continuum theory of Eringen. The fully simply supported nanoplate is modeled based on the nonlocal Kirchhoff, Mindlin, and higher-order plate theories. The non-dimensional equations of motion of the nonlocal plate models are established. The effects of moving nanoparticle's weight and existing friction between the surfaces of the moving nanoparticle and nanoplate on the in-plane and out-of-plane vibrations of the nanoplate are incorporated into the formulations of the proposed models. The eigen function expansion and the Laplace transform methods are employed for discretization of the governing equations in the spatial and the time domains, respectively. The analytical expressions of the dynamic deformation field associated with each nonlocal plate theory are obtained when the moving nanoparticle traverses the nanoplate on an arbitrary straight path (an opened path) as well as an ellipse path (a closed path). The dynamic in-plane forces and moments of each nonlocal plate model are also derived. Furthermore, the critical velocity and the critical angular velocity of the moving nanoparticle for the proposed models are expressed analytically for the aforementioned paths. Part II of this work consists in a comprehensive parametric study where the effects of influential parameters on dynamic response of the proposed nonlocal plate models are scrutinized in some detail.  相似文献   
232.
The possible usage of nanoplates in transporting of nanovehicles encouraged the author to propose some nonlocal plate models in the companion paper where the nanovehicle (i.e., moving nanoparticle) was modeled by a moving point load by considering its friction with the upper surface of the nanoplate. In this paper, a comprehensive parametric study is carried out to study the effects of length to thickness ratio of the nanoplate, small-scale parameter, and velocity (or angular velocity) of the moving nanoparticle on dynamic response of nonlocal Kirchhoff, Mindlin, and higher-order plates subjected to a moving nanoparticle. Herein, dynamic response of the nanoplate covers both time histories and dynamic amplitude factors of the in- and out-of-plane displacements. The capabilities of various nonlocal plate models in predicting the displacement field caused by friction and mass weight of the moving nanoparticle are then explored through various numerical analyses for two cases: (i) the moving nanoparticle moves along a diagonal of the nanoplate; (ii) the moving nanoparticle orbits on an ellipse path whose center is coincident with the nanoplate's center. The obtained results indicate that due to the incorporation of small-scale effect into shear strain energy of the nanoplate, an appropriate nonlocal plate model should be used. The results show that the choice of the nanoplate model to use relies on the small-scale parameter, geometrical properties of the nanoplate, and velocity of the moving nanoparticle.  相似文献   
233.
234.
Moghaddasi  Mehdi  Kiani  Yaser 《Meccanica》2022,57(5):1105-1124
Meccanica - In the present investigation, free vibration and also forced vibration response of a graphene platelet reinforced composite (GPLRC) laminated curved beam is investigated. It is assumed...  相似文献   
235.
2-C-Methyl-d-erythritol-4-phosphate (MEP) is a key chemical intermediate of the non-mevalonate pathway for isoprenoid biosynthesis employed by many pathogenic microbes. MEP is also the precursor for the synthesis of 4-diphosphocytidyl-2-C-methyl d-erythritol (CDP-ME), another key intermediate of the non-mevalonate pathway. As this pathway is non-existent in higher animals, including humans, it represents great opportunities for novel antimicrobial development. To facilitate the in-depth studies of this pathway, we reported here a formal synthesis of CDP-ME through a new synthesis of 2-C-methyl-d-erythritol-4-phosphoric acid from d-(+)-arabitol.  相似文献   
236.
The unsteady pressure field is obtained from time-resolved tomographic particle image velocimetry (Tomo-PIV) measurement within a fully developed turbulent boundary layer at free stream velocity of U ???=?9.3?m/s and Re???=?2,400. The pressure field is evaluated from the velocity fields measured by Tomo-PIV at 10?kHz invoking the momentum equation for unsteady incompressible flows. The spatial integration of the pressure gradient is conducted by solving the Poisson pressure equation with fixed boundary conditions at the outer edge of the boundary layer. The PIV-based evaluation of the pressure field is validated against simultaneous surface pressure measurement using calibrated condenser microphones mounted behind a pinhole orifice. The comparison shows agreement between the two pressure signals obtained from the Tomo-PIV and the microphones with a cross-correlation coefficient of 0.6 while their power spectral densities (PSD) overlap up to 3?kHz. The impact of several parameters governing the pressure evaluation from the PIV data is evaluated. The use of the Tomo-PIV system with the application of three-dimensional momentum equation shows higher accuracy compared to the planar version of the technique. The results show that the evaluation of the wall pressure can be conducted using a domain as small as half the boundary layer thickness (0.5??99) in both the streamwise and the wall normal directions. The combination of a correlation sliding-average technique, the Lagrangian approach to the evaluation of the material derivative and the planar integration of the Poisson pressure equation results in the best agreement with the pressure measurement of the surface microphones.  相似文献   
237.
Based on extensive computational studies, rules to derive the thermodynamically most stable macropolyhedral borane for any formula between BnHn−4 to BnHn+8 were identified. Formally, the macropolyhedral boranes may be obtained by condensing regular convex borane clusters where as many BH3 moieties are eliminated as vertexes are shared in the macropolyhedral framework. Macropolyhedral boranes consisting of two cluster fragments may be classified according to their general formulae ranging from BnHn−4 to BnHn+8. For each of these formulae, various structure types are conceivable differing in the number of shared vertexes and in the types of combined cluster fragments. However, for each general formula, only one structure type is known experimentally and this one is also computationally found to be thermodynamically preferred! For each class of macropolyhedral BnHm boranes, a preferred number of shared vertexes is identified, and this determines the number of skeletal electron pairs. With this knowledge, the type of fused clusters, i.e. the most favourable framework, may be predicted. The concept of preferred fragments may be applied to even predict the distribution of vertexes among the fused fragments in the thermodynamically most stable isomers. When there is at least one closo fragment it has 12-vertexes. Without any closo fragment the most stable macropolyhedral borane has a nido 10-vertex cluster fragment.  相似文献   
238.
Mechanical systems with dynamics on varying time scales, in particular those including highly oscillatory motion, impose challenging questions for numerical integration schemes. Tiny step sizes are required to guarantee a stable integration of the fast frequencies. However, for the simulation of the slow dynamics, integration with a larger time step is accurate enough. Small time steps increase integration times unnecessarily, especially for costly function evaluations. For systems comprising fast and slow dynamics, multirate methods integrate the slow part of the system with a relatively large step size while the fast part is integrated with a small time step. Main challenges are the identification of fast and slow parts (e.g. by separating the energy or by distinguishing sets of variables), the synchronisation of their dynamics and in particular the treatment of mixed parts that often appear when fast and slow dynamics are coupled by constraints. In this contribution, a multirate integrator is derived in closed form via a discrete variational principle on a time grid consisting of macro and micro time nodes. Variational integrators (based on a discrete version of Hamilton's principle) lead to symplectic and momentum preserving integration schemes that also exhibit good energy behavior. The resulting multirate variational integrator has the same preservation properties. An example demonstrates the performance of the multirate integrator for constrained multibody dynamics. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
239.
Recent developments in data-driven science have led researchers to integrate data from several sources, over diverse experimental procedures, or databases. This alone poses a major challenge in truthfully visualizing data, especially when the number of data points varies between classes. To aid the representation of datasets with differing sample size, we have developed a new type of plot overcoming limitations of current standard visualization charts. SinaPlot is inspired by the strip chart and the violin plot and operates by letting the normalized density of points restrict the jitter along the x-axis. The plot displays the same contour as a violin plot but resembles a simple strip chart for a small number of data points. By normalizing jitter over all classes, the plot provides a fair representation for comparison between classes with a varying number of samples. In this way, the plot conveys information of both the number of data points, the density distribution, outliers and data spread in a very simple, comprehensible, and condensed format. The package for producing the plots is available for R through the CRAN network using base graphics package and as geom for ggplot through ggforce. We also provide access to a web-server accepting excel sheets to produce the plots (http://servers.binf.ku.dk:8890/sinaplot/).  相似文献   
240.
Variational integrators are symplectic-momentum preserving integrators that are based on a discrete variational formulation of the underlying system. So far, variational integrators have been mainly developed and used for a wide variety of mechanical systems. In this work, we develop a variational integrator for the simulation of electric circuits. An appropriate variational formulation is presented to model the circuit from which the equations of motion are derived. Finally, a corresponding time-discrete variational formulation provides an iteration scheme for the simulation of the electric circuit. In this way, a variational integrator is constructed that gains several advantages. A comparison to standard integration techniques shows that even for simple LCR circuits a better long-time energy behavior and frequency preservation can be obtained. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号