首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1519篇
  免费   143篇
  国内免费   126篇
化学   1002篇
晶体学   13篇
力学   40篇
综合类   3篇
数学   167篇
物理学   283篇
无线电   280篇
  2024年   9篇
  2023年   39篇
  2022年   31篇
  2021年   50篇
  2020年   41篇
  2019年   56篇
  2018年   45篇
  2017年   45篇
  2016年   56篇
  2015年   55篇
  2014年   63篇
  2013年   81篇
  2012年   120篇
  2011年   110篇
  2010年   81篇
  2009年   67篇
  2008年   82篇
  2007年   73篇
  2006年   77篇
  2005年   79篇
  2004年   57篇
  2003年   49篇
  2002年   71篇
  2001年   68篇
  2000年   57篇
  1999年   35篇
  1998年   16篇
  1997年   25篇
  1996年   28篇
  1995年   16篇
  1994年   14篇
  1993年   8篇
  1992年   15篇
  1991年   13篇
  1990年   11篇
  1989年   9篇
  1988年   12篇
  1987年   1篇
  1986年   5篇
  1985年   5篇
  1984年   2篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有1788条查询结果,搜索用时 15 毫秒
91.
Proton transfer along a single-file hydrogen-bonded water chain is elucidated with a special emphasis on the investigation of chain length, side water, and solvent effects, as well as the temperature and pressure dependences. The number of water molecules in the chain varies from one to nine. The proton can be transported to the acceptor fragment through the single-file hydrogen-bonded water wire which contains at most five water molecules. If the number of water molecule is more than five, the proton is trapped by the chain in the hydroxyl-centered H(7)O(3) (+) state. The farthest water molecule involved in the formation of H(7)O(3) (+) is the fifth one away from the donor fragment. These phenomena reappear in the molecular dynamics simulations. The energy of the system is reduced along with the proton conduction. The proton transfer mechanism can be altered by excess proton. The augmentation of the solvent dielectric constant weakens the stability of the system, but favors the proton transfer. NMR spin-spin coupling constants can be used as a criterion in judging whether the proton is transferred or not. The enhancement of temperature increases the thermal motion of the molecule, augments the internal energy of the system, and favors the proton transfer. The lengthening of the water wire increases the entropy of the system, concomitantly, the temperature dependence of the Gibbs free energy increases. The most favorable condition for the proton transfer along the H-bonded water wire is the four-water contained chain with side water attached near to the acceptor fragment in polar solvent under higher temperature.  相似文献   
92.
To systematically explore the influence of the bulky aromatic ring skeleton with a large conjugated pi-system on the structures and properties of their complexes, six CuII, CoII, and NiII complexes with the anthracene-based carboxylic ligand anthracene-9-carboxylic acid (HL1), were synthesized and characterized, sometimes incorporating different auxiliary ligands: [Cu2(L1)4(CH3OH)2](CH3OH) (1), [Cu4(L1)6(L2)4](NO3)2(H2O)2 (2), {[Cu2(L1)4(L3)](CH3OH)0.25}infinity (3), [Co2(L1)4(L4)2(micro-H2O)](CH3OH) (4), {[Co(L1)2(L5)(CH3OH)2]}infinity (5), and {[Ni(L1)2(L5)(CH3OH)2]}infinity (6) (L2 = 2,2'-bipyridine, L3 = 1,4-diazabicyclo[2.2.2]octane, L4 = 1,10-phenanthroline, and L5 = 4,4'-bipyridine). 1 has a dinuclear structure that is further assembled to form a one-dimensional (1D) chain and then a two-dimensional (2D) network by the C-H...O H-bonding and pi...pi stacking interactions jointly. 2 takes a tetranuclear structure due to the existence of the chelating L2 ligand. 3 possesses a 1D chain structure by incorporating the related auxiliary ligand L3, which is further interlinked via interchain pi...pi stacking, resulting in a three-dimensional (3D) network. 4 also has a dinuclear structure and then forms a higher-dimensional supramolecular network through intermolecular pi...pi stacking and/or C-H...pi interactions. 5 and 6 are isostructural complexes, except they involve different metal ions, showing 1D chain structures, which are also assembled into 2D networks from the different crystallographic directions by interchain pi...pi stacking and C-H...pi interactions, respectively. The results reveal that the steric bulk of the anthracene ring in HL1 plays an important role in the formation of 1-6. The magnetic properties of the complexes were investigated, and the very long intermetallic distances result in weak magnetic coupling, with the exception of 1 and 3, which adopt the typical paddle-wheel structure of copper acetate and are thus strongly coupled.  相似文献   
93.
We describe how alkenes and alkynes can be hydrogenated under mild conditions by hydrogen transfer from water mediated by titanocene(III) and a substoichiometric quantity of one of the late transition metals usually employed as hydrogenation catalysts. This process proceeds presumably by H-atom transfer from TiIII-coordinated water to the late transition metal partner (depicted in the drawing above), a mechanism in support of which we provide theoretical and experimental evidence.  相似文献   
94.
Ti-MCM-41, B-Ti-MCM-41 and Ti-grafted MCM-41 were synthesized, characterized and studied in the epoxidation of cyclohexene. The synthetic methods and the effect of water in the oxidant are discussed.  相似文献   
95.
Geometry optimizations are performed at the DFTB3LYP6-311+G* level. Four intriguing coupling modes, totally eight stable structures are found in the potential energy surfaces of the water-assisted coupling of imidazole dimer radical cation. In these isomers, the water molecules are embedded between two imidazole moieties, and the oxygen atom is tridentate or quadridentate, respectively. The distinct redshifts of the vibrational frequencies of the O-H...N and N-H...O type H bonds indicate the strong interaction of two imidazole rings of respective isomer. Inspection of the highest occupied molecular orbital predicts the alterations of the geometry structures on oxidation and reduction. The low barrier of the fragment rotation demonstrates that the isomerization processes by experiencing the distinct transition states are easy to fulfill, especially for those with O-H...N and C-H...O H bonds. Both the energy difference of the 0 degrees-cis and 180 degrees-trans orientation and the barriers of the fragment rotation are lowered by the water assisting. The range of the zero point vibrational energy correction indicates that the influence on the complexes with N-H...O and O-H...N H bonds (0.13-0.17 kcal/mol) is more significant than those with O-H...N and C-H...O H bonds (+/-0.03 kcal/mol). The dissociation energies of these isomers indicate that the charges transfer easily through water in the dissociation process and then are distributed mainly over the imidazole ring connecting with water molecule. The isomer with proton transfer between imidazole fragments is the most stable one.  相似文献   
96.
In this work a gold electrode modified with self‐assembled layers (SAMs) composed with organic S‐containing compound and gold nanoparticles was prepared. The electrode with SAMs endowed with gold nanoparticles gave the high catalytic effect for ethylene glycol (EG) electrooxidation in solution at pH 7. For this novel sensor a linear relationship between the current response of EG at the potential of peak maximum (jp) and the concentration of this compound in solution (cEG) was found over the range 0.1 µM to 0.7 M with the detection sensitivity jp/cEG equal to about 5 A cm?2 mol?1 dm3 (at v=0.1 V s?1) and the detection limit of 0.046 µM.  相似文献   
97.
Metal sulfides have received considerable attention for efficient sodium storage owing to their high capacity and decent redox reversibility. However, the poor rate capability and fast capacity decay greatly hinder their practical application in sodium‐ion batteries. Herein, an elegant multi‐step templating strategy has been developed to rationally synthesize hierarchical double‐shelled nanoboxes with the CoS2 nanosheet‐constructed outer shell supported on the CuS inner shell. Their structure and composition enable these hierarchical CuS@CoS2 nanoboxes to show boosted electrochemical properties with high capacity, outstanding rate capability, and long cycle life.  相似文献   
98.
Embedding cubane [M4(OH)4] (M=Ni, Co) clusters within the matrix of metal–organic frameworks (MOFs) is a strategy to develop materials with unprecedented synergistic properties. Herein, a new material type based on the pore‐space partition of the cubic primitive minimal‐surface net (MOF‐14‐type) has been realized. CTGU‐15 made from the [Ni4(OH)4] cluster not only has very high BET surface area (3537 m2 g?1), but also exhibits bi‐microporous features with well‐defined micropores at 0.86 nm and 1.51 nm. Furthermore, CTGU‐15 is stable even under high pH (0.1 m KOH), making it well suited for methanol oxidation in basic medium. The optimal hybrid catalyst KB&CTGU‐15 (1:2) made from ketjen black (KB) and CTGU‐15 exhibits an outstanding performance with a high mass specific peak current of 527 mA mg?1 and excellent peak current density (29.8 mA cm?2) at low potential (0.6 V). The isostructural cobalt structure (CTGU‐16) has also been synthesized, further expanding the application potential of this material type.  相似文献   
99.
The electron transfer reactivity of the O2+O system in low-spin coupling is studied at the second-order unrestricted Møller–Plesset (full)/6-311+G* basis set level by using different transition state structures. The properties and stabilities of the encounter complexes are compared for the five selected coupling structures: two T type, collinear, parallel, and crossing. The activation barriers and the coupling matrix elements are also calculated. The results indicate that the structures of the encounter complexes directly affect the electron transfer mechanism and rate. These encounter complexes are structurally unstable, the contact distances between the acceptor O2 and the donor O are generally large, the interaction is weak, and the structures are floppy. The electronic transmission factor for the reacting system, O2+O, is less than unity; thus, the electron transfer reaction is nonadiabatic in nature. Analysis of the dependence of relevant kinetic parameters on various influencing factors has shown that the effect of the solvent medium on the coupling matrix element is small but that on the electron transfer rate is very large. Among the five selected transition state structures, the electron transfer is more likely to take place via T1-type and P-type structures. In the low-spin coupling the favorable electronic states for two reacting species are 1∑(O2) and X2Πg(O) instead of X3∑(O2) and X2πg(O), which are favorable for the high-spin (quartet state) coupling mechanism. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 989–998, 1999  相似文献   
100.
A hydrated sodium indium sulfide, Na5(In4S)(InS4)3.6H2O, has been prepared by hydrothermal synthesis. This material contains a tetrahedral sulfur site coordinated to four trivalent indium ions, an unusual bonding pattern not previously observed in open framework chalcogenides. The structure is related to the perovskite (CaTiO3) type with simultaneous substitutions of Ti by SIn4, O by InS4, and Ca2+ by [Na5(H2O)6]5+. It is a wide-gap semiconductor and shows photocatalytic activity under UV light for hydrogen generation from aqueous solution without use of any cocatalyst.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号