首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   0篇
化学   2篇
数学   107篇
无线电   32篇
  2023年   1篇
  2022年   1篇
  2020年   3篇
  2018年   1篇
  2016年   3篇
  2015年   3篇
  2014年   5篇
  2013年   9篇
  2012年   11篇
  2011年   7篇
  2010年   6篇
  2009年   10篇
  2008年   13篇
  2007年   10篇
  2006年   10篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有141条查询结果,搜索用时 843 毫秒
101.
We introduce a new class of second-order cover inequalities whose members are generally stronger than the classical knapsack cover inequalities that are commonly used to enhance the performance of branch-and-cut methods for 0–1 integer programming problems. These inequalities result by focusing attention on a single knapsack constraint in addition to an inequality that bounds the sum of all variables, or in general, that bounds a linear form containing only the coefficients 0, 1, and –1. We provide an algorithm that generates all non-dominated second-order cover inequalities, making use of theorems on dominance relationships to bypass the examination of many dominated alternatives. Furthermore, we derive conditions under which these non-dominated second-order cover inequalities would be facets of the convex hull of feasible solutions to the parent constraints, and demonstrate how they can be lifted otherwise. Numerical examples of applying the algorithm disclose its ability to generate valid inequalities that are sometimes significantly stronger than those derived from traditional knapsack covers. Our results can also be extended to incorporate multiple choice inequalities that limit sums over disjoint subsets of variables to be at most one.   相似文献   
102.
This paper deals with a class of nonconvex mathematical programs called Extreme Point Mathematical Programs. This class is a generalization of zero-one integer programs and is a special case of the Generalized Lattice Point Problem, and finds applications in various areas such as production scheduling, load balancing, and concave programming. The current work existing on this class of problems is limited to certain dual types of extreme point ranking methods (which do not find a feasible solution until optimality) and some non-convergent cutting plane algorithms. No computational experience exists. This paper develops a finitely convergent branch and bound algorithm for solving the problem. The principles involved in the design of this algorithm are quite general and apply to a wider class of mathematical programs including the Generalized Lattice Point Problem. A random problem generator is described which is capable of generating problems of varying levels of difficulty. Computational experience on such problems is provided.  相似文献   
103.
This paper is concerned with the development of an algorithm to solve continuous polynomial programming problems for which the objective function and the constraints are specified polynomials. A linear programming relaxation is derived for the problem based on a Reformulation Linearization Technique (RLT), which generates nonlinear (polynomial) implied constraints to be included in the original problem, and subsequently linearizes the resulting problem by defining new variables, one for each distinct polynomial term. This construct is then used to obtain lower bounds in the context of a proposed branch and bound scheme, which is proven to converge to a global optimal solution. A numerical example is presented to illustrate the proposed algorithm.  相似文献   
104.
In this paper a discrete location model for non-essential service facilities planning is described, which seeks the number, location, and size of facilities, that maximizes the total expected demand attracted by the facilities. It is assumed that the demand for service is sensitive to the distance from facilities and to their size. It is also assumed that facilities must satisfy a threshold level of demand (facilities are not economically viable below that level). A Mixed-Integer Nonlinear Programming (MINLP) model is proposed for this problem. A branch-and-bound algorithm is designed for solving this MINLP and its convergence to a global minimum is established. A finite procedure is also introduced to find a feasible solution for the MINLP that reduces the overall search in the binary tree generated by the branch-and-bound algorithm. Some numerical results using a GAMS/MINOS implementation of the algorithm are reported to illustrate its efficacy and efficiency in practice.  相似文献   
105.
In this paper, we discuss the solution of linear and quadratic eigenvalue complementarity problems (EiCPs) using an enumerative algorithm of the type introduced by Júdice et al. (Optim. Methods Softw. 24:549–586, 2009). Procedures for computing the interval that contains all the eigenvalues of the linear EiCP are first presented. A nonlinear programming (NLP) model for the quadratic EiCP is formulated next, and a necessary and sufficient condition for a stationary point of the NLP to be a solution of the quadratic EiCP is established. An extension of the enumerative algorithm for the quadratic EiCP is also developed, which solves this problem by computing a global minimum for the NLP formulation. Some computational experience is presented to highlight the efficiency and efficacy of the proposed enumerative algorithm for solving linear and quadratic EiCPs.  相似文献   
106.
In this paper, we discuss the solution of an Inverse Eigenvalue Complementarity Problem. Two nonlinear formulations are presented for this problem. A necessary and sufficient condition for a stationary point of the first of these formulations to be a solution of the problem is established. On the other hand, to assure global convergence to a solution of this problem when it exists, an enumerative algorithm is designed by exploiting the structure of the second formulation. The use of additional implied constraints for enhancing the efficiency of the algorithm is also discussed. Computational results are provided to highlight the performance of the algorithm.  相似文献   
107.
This paper recommends some procedures for the selection of step sizes in the context of subgradient optimization. The first of these procedures is developed in detail in this study and is a theoretically convergent scheme. This method has two phases, the first phase is designed to accelerate the solution procedure towards an optimal solution, while the second phase helps to close in on an optimal solution. A second technique recommended is a simple-minded scheme which, although not theoretically convergent, seems to be computationally very efficient. These two methods are shown to compare favorably with Held, Wolfe and Crowder's scheme for prescribing step sizes. We also suggest some modifications of the latter scheme to make it computationally more efficient.  相似文献   
108.
This paper presents a new surrogate constraint analysis that givesrise to a family of strong valid inequalities calledsurrogate-knapsack (S-K) cuts. The analytical procedure presentedprovides a strong S-K cut subject to constraining the values ofselected cut coefficients, including the right-hand side. Ourapproach is applicable to both zero-one integer problems and problemshaving multiple choice (generalized upper bound) constraints. We alsodevelop a strengthening process that further tightens the S-K cutobtained via the surrogate analysis. Building on this, we develop apolynomial-time separation procedure that successfully generates anS-K cut that renders a given non-integer extreme point infeasible. Weshow how sequential lifting processes can be viewed in our framework,and demonstrate that our approach can obtain facets that are notavailable to standard lifting methods. We also provide a relatedanalysis for generating fast cuts. Finally, we presentcomputational results of the new S-K cuts for solving 0-1 integerprogramming problems. Our outcomes disclose that the new cuts arecapable of reducing the duality gap between optimal continuous andinteger feasible solutions more effectively than standard liftedcover inequalities, as used in modern codes such as the CPLEX mixed0-1 integer programming solver.  相似文献   
109.
Subgradient methods are popular for solving nondifferentiable optimization problems because of their relative ease in implementation, but are not always robust and require a careful design of strategies in order to yield an effective procedure for any given class of problems. In this paper, we present an approach for solving the Euclidean distance multifacility location problem (EMFLP) using conjugate or deflected subgradient based algorithms along with suitable line-search strategies. The subgradient deflection method considered is the Average Direction Strategy (ADS) imbedded within the Variable Target Value Method (VTVM). We also investigate the generation of two types of subgradients to be employed in conjunction with ADS. The first type is a simple valid subgradient that assigns zero values to contributions corresponding to the nondifferentiable terms in the objective function, and so, the subgradient is composed by summing the contributions corresponding to the differentiable terms alone. The second type expends more effort to derive a low-norm member of the subdifferential in order to enhance the prospect of obtaining a descent direction. Furthermore, a special Newton-based line-search that exploits the nondifferentiability of the problem is also designed to be implemented in the developed algorithm in order to study its impact on the convergence behavior. Various combinations of the above strategies are composed and evaluated on a set of test problems. The results show that a modification of the VTVM method along with the first or a certain combination of the two subgradient generation strategies, and the use of a suitable line-search technique, provides promising results. An alternative block-halving step-size strategy used within VTVM in conjunction with the proposed line-search method yields a competitive second choice performance.  相似文献   
110.

Long Range Wide Area Network (LoRaWAN) emerges to connect devices that require long-range and low-cost (bandwidth and power) communication services. In this context, the adoption of this technology brings new challenges due to the densification of IoT devices, which causes signal interference and affects the QoS directly. On the other hand, the LoRaWAN transmission configurations’ flexibility allows higher management to use end-device parameters, allowing better resource utilization and improve network scalability. We evaluate an adaptive solution that defines the best LoRaWAN parameter settings to reduce the channel utilization and, consequently, maximize the number of packets delivered. Additionally, to validate the method, we used a mixed-integer linear programming solution and compared the results obtained with those given by the heuristics. The results achieved by the heuristics were very close to those provided by the optimal result, demonstrating the effectiveness of the heuristics.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号