首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1197篇
  免费   35篇
  国内免费   4篇
化学   609篇
晶体学   5篇
力学   29篇
数学   188篇
物理学   320篇
无线电   85篇
  2021年   10篇
  2019年   15篇
  2018年   8篇
  2017年   9篇
  2016年   28篇
  2015年   24篇
  2014年   15篇
  2013年   43篇
  2012年   59篇
  2011年   59篇
  2010年   44篇
  2009年   42篇
  2008年   39篇
  2007年   46篇
  2006年   42篇
  2005年   40篇
  2004年   41篇
  2003年   34篇
  2002年   36篇
  2001年   33篇
  2000年   30篇
  1999年   17篇
  1998年   29篇
  1997年   22篇
  1996年   17篇
  1995年   14篇
  1994年   19篇
  1993年   20篇
  1992年   19篇
  1991年   24篇
  1990年   17篇
  1989年   12篇
  1988年   14篇
  1987年   13篇
  1986年   9篇
  1985年   18篇
  1984年   21篇
  1983年   16篇
  1982年   18篇
  1981年   13篇
  1980年   15篇
  1979年   17篇
  1978年   19篇
  1976年   8篇
  1975年   17篇
  1974年   11篇
  1973年   11篇
  1972年   7篇
  1970年   9篇
  1969年   9篇
排序方式: 共有1236条查询结果,搜索用时 10 毫秒
71.
For the first time, large amount of Janus silica particles as small as 100 nm in diameter were prepared through a simple method based on the elaboration of Pickering emulsions of wax-in-water. Controlling the kinetic stabilization of wax droplets allows the fabrication of gram-sized quantities of regular asymmetric inorganic particles with high yield. In fact, our method is based on a limited coalescence process, which allows one to predict the quantity of interface which is produced when working with a known mass of wax, and thus to be sure that all introduced silica particles are adsorbed on the wax surface. To this end, the hydrophilic surface of the silica particles was made partially hydrophobic by adsorbing a known amount of surfactant: cetyltrimethylammonium bromide (CTAB). Varying the concentration in surfactant results in tuning the penetration rate of the particles in the wax droplets, leading to various dimension of the modified area. The broken spherical symmetry of the particle surface was thereafter revealed by the selective adsorption of gold nanoparticles on the amino-modified surface.  相似文献   
72.
Solid-stabilized emulsions   总被引:1,自引:0,他引:1  
The comprehension of bulk properties of solid-stabilized emulsions (stability, compressibility, elasticity) in relation with interfacial properties has progressed. The association of oil, water and particles allows a large set of materials to be obtained, where emulsions are used either as intermediate or end products. The efficiency of some stimulus-responsive particles to stabilize or destabilize emulsions “on demand” has been experimentally evidenced.  相似文献   
73.
A non‐targeted, ultra‐high‐resolution mass spectrometric, direct analysis of oak‐wood extracts from two species (Quercus robur L. and Quercus petraea Liebl.) from three French forests, and of a wine aged in barrels derived therefrom has been performed to identify families of metabolites that could discriminate both the species and the geographical origin of woods. From 12 T ultra‐high‐resolution Fourier transform ion cyclotron resonance mass spectra of wood extracts, hundreds of mass signals were identified as possible significant biomarkers of the two species, with phenolic and carbohydrate moieties leading the differentiation between Q. robur and Q. petraea, respectively, as corroborated by both FTMS and NMR data. For the first time, it is shown that oak woods can also be discriminated on the basis of hundreds of forest‐related compounds, and particular emphasis is put on sessile oaks from the Tronçais forest, for which sugars are significantly discriminant. Despite the higher complexity and diversity of wine metabolites, forest‐related compounds can also be detected in wines aged in related barrels. It is only by using these non‐targeted analyses that such innovative results, which reveal specific chemodiversities of natural materials, can be obtained.  相似文献   
74.
In the present work, we focus on the bulk rheology of mixtures consisting of surfactant modified silica nanoparticles in water. Depending on the ratio of surfactant and nanoparticle concentrations, significant modifications in the measured rheology are evidenced. A domain where the dispersions behave like viscoelastic media is observed. Outside this domain, the dispersions exhibit viscous properties. The changes in the bulk rheology characteristics are discussed in terms of interaction effects between the surfactant and the particles. The results obtained are seen in the context of diluted emulsions' properties and characteristics.  相似文献   
75.
Two new intermetallic alkaline‐earth palladium borides, SrPd4B and BaPd4B were synthesised and their physical properties were investigated. The crystal structure of SrPd4B was solved from powder X‐ray diffraction data: new structure type, space group Pnma, a = 6.0014(1) Å, b = 5.5041(1) Å, c = 11.8723(2) Å, RI = 0.065, RP = 0.093. BaPd4B is isostructural with a = 6.0883(1) Å, b = 5.6066(1) Å, c = 12.0050(2) Å, RI = 0.062, RP = 0.097. The relationship of this structure type with the series of derivatives of the CaCu5 type is discussed. Calculated electronic band structures for palladium, Pd3B, SrPd5, SrPd4B and SrPd3B are compared. The role of boron and strontium for the electronic properties is discussed in detail. SrPd4B shows metallic behaviour with a DOS(EF) ≈? 1.7 eV–1 · f.u.–1 at the Fermi level. Magnetic properties, electrical resistivity and specific heat capacity measurements reveal that the two compounds are diamagnetic metallic conductors with low electronic density of states, in agreement, with the electronic structure calculations.  相似文献   
76.
This paper focuses on the determination of thermal and electrical properties of individual thermoelectric nanowires, primarily bismuth and bismuth compound nanowires, as functions of their crystallinity, diameter, and composition. For measurements of the Seebeck coefficient and the electrical and thermal conductivity, specially designed microchips have been developed and employed. Finite-element simulations demonstrate that the temperature profiles of the microchips provide suitable temperature gradients for Seebeck-effect measurements and heat-sink conditions for thermal conductivity investigations. First measurements of thermal conductivity of metallic nanowires and of Seebeck coefficients of granular nanowires prepared by focused electron-beam-induced deposition are presented. Some of these results are discussed in the framework of finite-size-effect theory.  相似文献   
77.
This work is motivated by cryogenic turning which allows end shape machining and simultaneously attaining a hardened surface due to deformation induced martensitic transformations. To study the process on the microscale, a multivariant phase field model for martensitic transformations in conjunction with a crystal plastic material model is introduced. The evolution of microstructure is assumed to follow a time-dependent Ginzburg-Landau equation. To solve the field equations the finite element method is used. Time integration is performed with Euler backward schemes, on the global level for the evolution equation of the phase field, and on the element level for the crystal plastic material law. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
78.
Two‐photon photodynamic therapy is a promising therapeutic method which requires the development of sensitizers with efficient two‐photon absorption and singlet‐oxygen generation. Reported here are two new diketopyrrolopyrrole‐porphyrin conjugates as robust two‐photon absorbing dyes with high two‐photon absorption cross‐sections within the therapeutic window. Furthermore, for the first time the singlet‐oxygen generation efficiency of diketopyrrolopyrrole‐containing systems is investigated. A preliminary study on cell culture showed efficient two‐photon induced phototoxicity.  相似文献   
79.
The present work discusses the grafting by electron beam irradiation of poly(ethylene oxide) (PEO) star-shaped polymers onto porous expanded polytetrafluoroethylene (EXPTFE) surfaces. The resulting materials are intended to combine the good biocompatible properties of PEO with the outstanding mechanical properties of PTFE. The star-shaped PEOs were synthesized via anionic polymerization. 3 Mev electron beam irradiation was applied to graft these PEO stars onto porous EXPTFE surfaces. The hydrophobic EXPTFE surface had to be pre-modified with N-vinylpyrrolidone. ESCA was used to quantify the amount of grafted star-shaped PEO. Unmodified EXPTFE surfaces are well known, when implanted in a body, to be rapidly covered by a layer of cells and fibrin. The EXPTFE coated with PEO were implanted in the peritoneal cavity of rats (or under the back skin). This implantation did not induce any inflammation reactions and SEM analysis had attested the absence of adsorbed cells and fibrin. The glucose diffusion properties of these membranes were studied by a lag time analysis method and compared to those of pure PEO hydrogels. As expected, glucose diffuses through the hydrogel coated membrane and diffusion is not affected by the presence of the EXPTFE membrane.  相似文献   
80.
Memristive devices based on mixed ionic–electronic resistive switches have an enormous potential to replace today's transistor‐based memories and Von Neumann computing architectures thanks to their ability for nonvolatile information storage and neuromorphic computing. It still remains unclear however how ionic carriers are propagated in amorphous oxide films at high local electric fields. By using memristive model devices based on LaFeO3 with either amorphous or epitaxial nanostructures, we engineer the structural local bonding units and increase the oxygen‐ionic diffusion coefficient by one order of magnitude for the amorphous oxide, affecting the resistive switching operation. We show that only devices based on amorphous LaFeO3 films reveal memristive behavior due to their increased oxygen vacancy concentration. We achieved stable resistive switching with switching times down to microseconds and confirm that it is predominantly the oxygen‐ionic diffusion character and not electronic defect state changes that modulate the resistive switching device response. Ultimately, these results show that the local arrangement of structural bonding units in amorphous perovskite films at room temperature can be used to largely tune the oxygen vacancy (defect) kinetics for resistive switches (memristors) that are both theoretically challenging to predict and promising for future memory and neuromorphic computing applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号