首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41516篇
  免费   10195篇
  国内免费   1401篇
化学   41324篇
晶体学   317篇
力学   439篇
数学   1937篇
物理学   2211篇
无线电   6884篇
  2024年   4篇
  2023年   44篇
  2022年   112篇
  2021年   243篇
  2020年   1813篇
  2019年   3227篇
  2018年   1477篇
  2017年   1029篇
  2016年   4002篇
  2015年   4116篇
  2014年   4024篇
  2013年   4575篇
  2012年   3367篇
  2011年   2558篇
  2010年   3159篇
  2009年   3145篇
  2008年   2607篇
  2007年   1979篇
  2006年   1600篇
  2005年   1771篇
  2004年   1522篇
  2003年   1395篇
  2002年   2067篇
  2001年   1394篇
  2000年   1329篇
  1999年   367篇
  1998年   45篇
  1997年   34篇
  1996年   8篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   5篇
  1991年   6篇
  1990年   5篇
  1989年   9篇
  1988年   7篇
  1987年   2篇
  1986年   3篇
  1985年   8篇
  1984年   8篇
  1983年   7篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1924年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
151.
Six 14‐membered cyclopeptide alkaloids, i.e., ramosines A–C, mucronine J, and lotusines A and D, were isolated from the roots of Paliurus ramosissimus, and an additional four, hemsines A–D, from the roots of P. hemsleyanus. Among these, ramosines A–C ( 1, 5 , and 6 , resp.) and hemsines A and B ( 7 and 8 , resp.) are new bases of the amphibine‐B type, and hemsines C and D ( 9 and 10 , resp.) are new integerrine‐type alkaloids. Additionally, ramosine C ( 6 ) represents the first 14‐membered cyclopeptide alkaloid possessing a substitution (? OH) at C(13′). Their structural elucidations were based on spectral analysis and molecular‐modeling studies. Pronounced solvent effects in the 1H‐ and 13C‐NMR spectra of these two types of alkaloids were observed.  相似文献   
152.
Antimicrobial resistance (AMR) poses a serious threat to our society from both the medical and economic point of view, while the antibiotic discovery pipeline has been dwindling over the last decades. Targeting non-essential bacterial pathways, such as those leading to antibiotic persistence, a bacterial bet-hedging strategy, will lead to new molecular entities displaying low selective pressure, thereby reducing the insurgence of AMR. Here, we describe a way to target (p)ppGpp (guanosine tetra- or penta-phosphate) signaling, a non-essential pathway involved in the formation of persisters, with a structure-based approach. A superfamily of enzymes called RSH (RelA/SpoT Homolog) regulates the intracellular levels of this alarmone. We virtually screened several fragment libraries against the (p)ppGpp synthetase domain of our RSH chosen model RelSeq, selected three main chemotypes, and measured their interaction with RelSeq by thermal shift assay and STD-NMR. Most of the tested fragments are selective for the synthetase domain, allowing us to select the aminobenzoic acid scaffold as a hit for lead development.  相似文献   
153.
(1) Background: Achillea mellifolium belongs to a highly reputed family of medicinal plants, with plant extract being used as medicine in indigenous system. However, limited data is available regarding the exploitation of the medicinal potential of isolated pure compounds from this family; (2) Methods: A whole plant extract was partitioned into fractions and on the basis of biological activity, an ethyl acetate fraction was selected for isolation of pure compounds. Isolated compounds were characterized using different spectroscopic techniques. The compounds isolated from this study were tested for their medicinal potential using in-vitro enzyme assay, coupled with in-silico studies; (3) Results: Three new acrylic acid derivatives (1–3) have been isolated from the ethyl acetate fraction of Achillea mellifolium. The characterization of these compounds (1–3) was carried out using UV/Vis, FT-IR, 1D and 2D-NMR spectroscopy (1H-NMR, 13C-NMR, HMBC, NOESY) and mass spectrometry. These acrylic acid derivatives were further evaluated for their enzyme inhibition potential against urease from jack bean and α glucosidase from Saccharomyces cerevisiae, using both in-silico and in-vitro approaches. In-vitro studies showed that compound 3 has the highest inhibition against urease enzyme (IC50 =10.46 ± 0.03 μΜ), followed by compound 1 and compound 2 with percent inhibition and IC50 value of 16.87 ± 0.02 c and 13.71 ± 0.07 μΜ, respectively, compared to the standard (thiourea-IC50 = 21.5 ± 0.01 μΜ). The investigated IC50 value of compound 3 against the urease enzyme is two times lower compared to thiourea, suggesting that this compound is twice as active compared to the standard drug. On the other hand, all three compounds (1–3) revealed mild inhibition potential against α-glucosidase. In-silico molecular docking studies, in combination with MD simulations and free energy, calculations were also performed to rationalize their time evolved mode of interaction inside the active pocket. Binding energies were computed using a MMPBSA approach, and the role of individual residues to overall binding of the inhibitors inside the active pockets were also computed; (4) Conclusions: Together, these studies confirm the inhibitory potential of isolated acrylic acid derivatives against both urease and α-glucosidase enzymes; however, their inhibition potential is better for urease enzyme even when compared to the standard.  相似文献   
154.
155.
With the growth of network traffic volume, link congestion cannot be avoided efficiently with conventional routing protocols. By utilizing the single shortest‐path routing algorithm from link state advertisement information, standard routing protocols lack of global awareness and are difficult to be modified in a traditional network environment. Recently, software‐defined network (SDN) provided innovative architecture for researchers to program their own network protocols. With SDN, we can divert heavy traffic to multiple paths in order to resolve link congestion. Furthermore, certain network traffics come in periodic fashion such as peak hours at working days so that we can leverage forecasting for resource management to improve its performance. In this paper, we propose a proactive multipath routing with a predictive mechanism (PMRP) to achieve high‐performance congestion resolution. PMRP has two main concepts: (a) a proactive mechanism where PMRP deploys M/M/1 queue and traffic statistics to simulate weighted delay for possible combinations of multipaths placement of all subnet pairs, and leverage genetic algorithm for accelerating selection of optimized solution, and (b) a predictive mechanism whereby PMRP uses exponential smoothing for demand traffic volumes and variance predictions. Experimental results show a 49% reduction in average delay as compared with single shortest routing, and a 16% reduction in average delay compared with utilization & topology‐aware multipath routing (UTAMP). With the predictive mechanism, PMRP can decrease an additional 20% average delay. Furthermore, PMRP reduces 93% of flow table usage on average as compared with UTAMP.  相似文献   
156.
157.
Assembly theory (referred to in prior works as pathway assembly) has been developed to explore the extrinsic information required to distinguish a given object from a random ensemble. In prior work, we explored the key concepts relating to deconstructing an object into its irreducible parts and then evaluating the minimum number of steps required to rebuild it, allowing for the reuse of constructed sub-objects. We have also explored the application of this approach to molecules, as molecular assembly, and how molecular assembly can be inferred experimentally and used for life detection. In this article, we formalise the core assembly concepts mathematically in terms of assembly spaces and related concepts and determine bounds on the assembly index. We explore examples of constructing assembly spaces for mathematical and physical objects and propose that objects with a high assembly index can be uniquely identified as those that must have been produced using directed biological or technological processes rather than purely random processes, thereby defining a new scale of aliveness. We think this approach is needed to help identify the new physical and chemical laws needed to understand what life is, by quantifying what life does.  相似文献   
158.
159.
A high‐quality polycrystalline SnO2 electron‐transfer layer is synthesized through an in situ, low‐temperature, and unique butanol–water solvent‐assisted process. By choosing a mixture of butanol and water as a solvent, the crystallinity is enhanced and the crystallization temperature is lowered to 130 °C, making the process fully compatible with flexible plastic substrates. The best solar cells fabricated using these layers achieve an efficiency of 20.52% (average 19.02%) which is among the best in the class of planar n–i–p‐type perovskite (MAPbI3) solar cells. The strongly reduced crystallization temperature of the materials allows their use on a flexible substrate, with a resulting device efficiency of 18%.  相似文献   
160.
Visually readable codes play a crucial role in anticounterfeiting measures. However, current coding approaches do not enable time‐dependent codes to be visually read, adjusted, and differentiated in bright and dark fields. Here, using a combined strategy of piezoelectric lattice selection, oxygen vacancy engineering, and activator doping, a lanthanide ion‐doped titanate is developed that integrates mechano‐, thermo‐, and photo‐responsive color change (>18 h for bright field), persistent luminescence (>6 h for dark field), and stimulus‐triggered multimodal luminescence. The feasibility of optical encoding, visual displaying, and stimulus‐responsive encrypting of time‐dependent, dual‐field information by using the developed material is demonstrated. In particular, the differentiated display of dual‐field modes is achieved by combining mechanostimulated abolition of only the persistent luminescence and thermo‐ and photostimulated reversal of both the color change and persistent luminescence. The results provide new insights for designing advanced materials and encryption technologies for photonic displays, information security, and intelligent anticounterfeiting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号