首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   541篇
  免费   34篇
  国内免费   2篇
化学   276篇
晶体学   3篇
力学   19篇
数学   92篇
物理学   95篇
无线电   92篇
  2024年   4篇
  2023年   9篇
  2022年   33篇
  2021年   27篇
  2020年   16篇
  2019年   31篇
  2018年   20篇
  2017年   26篇
  2016年   37篇
  2015年   19篇
  2014年   18篇
  2013年   38篇
  2012年   39篇
  2011年   37篇
  2010年   32篇
  2009年   26篇
  2008年   34篇
  2007年   20篇
  2006年   24篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   5篇
  2001年   7篇
  2000年   8篇
  1999年   1篇
  1998年   4篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   5篇
  1980年   1篇
排序方式: 共有577条查询结果,搜索用时 15 毫秒
31.
Abstract

Hydrogels have been prepared from 2-hydroxyethyl methacrylate polymerized in the presence of isocyanate-terminated poly(ethylene glycol) (PEG) crosslinking agents. PEGS of molecular weights 200, 400, and 1000 were investigated. The crosslinked nature of the hydrogels was demonstrated by their insolubility in solvents which normally dissolve poly(HEMA). Hexamethylene diisocyanate (HDI) was mainly used as the isocyanate. The molecular weight of the PEG and the crosslinker content significantly influenced the equilibrium water sorption and mechanical properties of the saturated networks. It was observed that as the molecular weight of the PEG increased, the water sorption increased and the nominal modulus decreased. However, for higher levels of cross-linker, water sorption decreased and modulus increased at low molecular weight PEG; for PEG 1000, water absorption increased as crosslinker content increased. These results are explained by the competing effects of flexibility, crosslink density, and hydrophobicity contributed by the various constituents of the hydrogels.  相似文献   
32.
The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.  相似文献   
33.
The high specific capacitance along with good cycling stability are crucial for practical applications of supercapacitors,which always demands high-performance and stable electrode materials.In this work,we report a series of ternary composites of CoO-ZnO with different fractions of reduced graphene oxide(rGO) synthesized by in-situ growth on nickel foam,named as CZG-1,2 and 3,respectively.This sort of binder-free electrodes presents excellent electrochemical properties as well as large capacitance due to their low electrical resistance and high oxygen vacancies.Particularly,the sample of CZG-2(CoO-ZnO/rGO 20 mg) in a nanoreticular structure shows the best electrochemical performance with a maximum specific capacitance of 1951.8 F/g(216.9 mAh/g) at a current intensity of 1 A/g.The CZG-2-based hybrid supercapacitor delivers a high energy density up to 45.9 Wh/kg at a high power density of 800 W/kg,and kept the capacitance retention of 90.1% over 5000 charge-discharge cycles.  相似文献   
34.
35.
Research on Chemical Intermediates - We prepared unique BiVO4/reduce graphene oxide (BiVO4/rGO) nanocomposite with enhanced photocatalytic ability by hydrothermal method applying...  相似文献   
36.
In the current study, we report on the dielectric behavior of colossal-dielectric-constant Na1/2La1/2Cu3Ti4O12 (NLCTO) ceramics prepared by mechanochemical synthesis and spark plasma sintering (SPS) at 850 °C, 900 °C, and 925 °C for 10 min. X-ray powder diffraction analysis showed that all the ceramics have a cubic phase. Scanning electron microscope observations revealed an increase in the average grain size from 175 to 300 nm with an increase in the sintering temperature. SPS NLCTO ceramics showed a room-temperature colossal dielectric constant (>103) and a comparatively high dielectric loss (>0.1) over most of the studied frequency range (1 Hz–40 MHz). Two relaxation peaks were observed in the spectra of the electrical modulus and attributed to the response of grain and grain boundary. According to the Nyquist plots of complex impedance, the SPS NLCTO ceramics have semiconductor grains surrounded by electrically resistive grain boundaries. The colossal dielectric constant of SPS NLCTO ceramics was attributed to the internal barrier layer capacitance (IBLC) effect. The high dielectric loss is thought to be due to the low resistivity of the grain boundary of SPS NLCTO.  相似文献   
37.
A new class of unsaturated polyesters based on diethylketone have been prepared by interfacial polymerization of 2,4-bis(4-hydroxybenzylidene)-3-pentanone(I) and 2,4-bis(4-hydroxy-3-methoxybenzylidene)-3-pentanone(II) with 4,4’-azodibenzoyl chloride and 3,3’-azodibenzoyl chloride at ambient temperature. The model compounds were synthesized by reaction of(I) and(II) with benzoyl chloride. The new monomers, model compounds and polyesters have been characterized by different spectral analyses. The polyesters have inherent viscosity of 0.55-0.80 d L/g and moderate number average molecular weight(Mn) in the range of 6150-7400 g/mol. Most of the compounds exhibited their solubility in aprotic solvents while partial solubility in various halogenated organic solvents was observed. The temperatures of 10% weight loss were high(225-330 °C) in nitrogen, indicating that these polyesters have excellent thermal stability. Doping with iodine dramatically raised the conductivity and produced brown colored semiconductive polymers with a maximum conductivity of 2.7 × 10-6 --1cm-1. Moreover, the morphological properties of selected example of polyesters were detected by SEM.  相似文献   
38.
This research paper comprises of the synthesis of polypyrrole (PPy)-Fe2O3 nanocomposites by employing the in situ chemical oxidative polymerization method. The concentration of the filler material was adjusted between 10–50 wt % of PPy. The synthesized nanocomposites were characterized by using X-ray diffraction (XRD). Magnetic analysis and DC electrical conductivity of the samples were carried out using vibrating sample magnetometer (VSM) and two probe DC conductivity method, point towards magnetically active and electrically conductive samples. The magnetic parameters under applied magnetic field demonstrated that the values of coercivity (H c ), saturation magnetization (M s ) and remanence (M r ) can be tailored by carefully controlling the amount of dopant material into the nanocomposites indicating their suitability for controllable switching devices and microwave absorption applications. The DC electrical conductivity showed an increase up to 20 wt % of filler material and thereafter a decrease in the conductivity of nanocomposites with increase in filler content is observed. Thermogravimetric analysis (TGA) showed an increase in thermal stability with an increase in ferrite content in nanocomposites.  相似文献   
39.
This article investigates the analytic solution for the flow of a third grade fluid past an infinite porous plate. The method of parameter differentiation is used to linearized the governing flow equation. The solution of the obtained linear equation is developed by differential transform method in combination with the method of superposition. The obtained results are compared with existing results in the literature and an excellent agreement is found. This shows that the parameter differentiation is a powerful technique for solving nonlinear problems. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号