首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1056篇
  免费   22篇
  国内免费   4篇
化学   605篇
晶体学   10篇
力学   41篇
数学   125篇
物理学   160篇
无线电   141篇
  2023年   8篇
  2022年   62篇
  2021年   50篇
  2020年   44篇
  2019年   26篇
  2018年   42篇
  2017年   34篇
  2016年   50篇
  2015年   21篇
  2014年   29篇
  2013年   79篇
  2012年   52篇
  2011年   50篇
  2010年   29篇
  2009年   42篇
  2008年   43篇
  2007年   34篇
  2006年   37篇
  2005年   26篇
  2004年   23篇
  2003年   25篇
  2002年   23篇
  2001年   13篇
  2000年   20篇
  1999年   9篇
  1998年   17篇
  1997年   17篇
  1996年   20篇
  1995年   13篇
  1994年   11篇
  1993年   4篇
  1992年   8篇
  1991年   6篇
  1990年   6篇
  1989年   6篇
  1988年   8篇
  1986年   4篇
  1985年   8篇
  1984年   7篇
  1983年   9篇
  1982年   4篇
  1981年   12篇
  1979年   4篇
  1977年   4篇
  1975年   5篇
  1974年   5篇
  1973年   4篇
  1970年   4篇
  1961年   3篇
  1954年   3篇
排序方式: 共有1082条查询结果,搜索用时 11 毫秒
921.
922.
A sensitive and selective luminescence quenching method is developed and used for manual and flow injection analysis (FIA) of chromium(VI) by reaction with [Ru(bpy)3]2+. The emission peak of ruthenium(II) at 595 nm is linearly decreased as a function of Cr(VI) concentration. This permits determination of chromium(VI) ion over the concentration range 0.1-20 μg ml−1 with a detection limit of 33 ng ml−1. The quenching process is due to an electron transfer from the luminescent [Ru(bpy)3]2+ complex ion to Cr(VI) resulting in the formation of the non-luminescent [Ru(bpy)3]3+ complex ion. Selectivity for Cr(VI) over many anions and transition, alkali and alkaline earth metal cations is demonstrated. High concentration levels of sulphate, chloride, borate, acetate, phosphate, nitrate, cyanide, Pb2+, Zn2+, Hg2+, Cu2+, Cd2+, Ni2+ and Mn2+ ions are tolerated. The effects of solution pH and [Ru(bpy)3]2+ reagent concentration are examined and the reaction conditions are optimized. Validation of the method according to the quality assurance standards show suitability of the proposed method for use in the quality control assessment of Cr(VI) in complex matrices without prior treatment. The method is successfully applied to determine chromium(VI) in electroplating baths using flow injection analysis. Results with a mean standard deviation of ±0.6% are obtained which compare fairly well with data obtained using atomic absorption spectrometry.  相似文献   
923.
A reversed-phased HPLC method that allows the separation and simultaneous determination of the preservatives benzoic (BA) and sorbic acids (SA), methyl- (MP) and propylparabens (PP) is described. The separations were effected by using an initial mobile phase of methanol-acetate buffer (pH 4.4) (35:65) to elute BA, SA and MP and changing the mobile phase composition to methanol-acetate buffer (pH 4.4) (50:50) thereafter. The detector wavelength was set at 254 nm. Under these conditions, separation of the four components was achieved in less than 23 min. Analytical characteristics of the separation such as limit of detection, limit of quantification, linear range and reproducibility were evaluated. The developed method was applied to the determination of 67 foodstuffs (mainly imported), comprising soft drinks, jams, sauces, canned fruits/vegetables, dried vegetables/fruits and others. The range of preservatives found were from not detected (nd)--1260, nd--1390, nd--44.8 and nd--221 mg kg(-1) for BA, SA, MP and PP, respectively.  相似文献   
924.
Fluorine is an important trace element for life and human well-being. Food, in general, provides about 40 percent of the fluorine intake in the human body. In order to measure fluorine levels in human diet samples, Instrumental Neutron Activation Analysis (INAA) and Proton Induced Gamma-ray Emission (PIGE) analysis were used. Reactions19F(n,)20F and19F(n, p)19O were employed for determination of the fluorine concentration using a reactor neutron spectrum and epithermal neutrons. Corrections were made for the sodium matrix interference caused by the23Na(n, )20F threshold reaction in the case of reactor neutron cyclic activation analysis and for the oxygen interference via18O(n, )19O reaction when using the epithermal cyclic NAA method. The fluorine content of the diet samples was also determined by PIGE analysis making use of the resonance reaction19F(p, )16O at 872 keV. Cyclic Neutron Activation Analysis (CNAA) when combined with mass fractionation was found to be the most suitable for determination of low concentration of fluorine, through the19F(n, )20F reaction with a detection limit of 2.2 ppm in Bowen's Kale elemental standard.  相似文献   
925.
In spite of the growing acceptance of matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry for the analysis of a wide variety of compounds, including polymers and proteins, its use in analyzing low‐molecular‐weight molecules (<1000m/z) is still limited. This is mainly due to the interference of matrix molecules in the low‐mass range. Here the derivatized fullerenes covalently bound to silica particles with different pore sizes are applied as thin layer for laser desorption/ionization (LDI) mass spectrometric analysis. Thus, an interference of intrinsic matrix ions can be eliminated or minimized in comparison with the state‐of‐the‐art weak organic acid matrices. The desorption/ionization ability of the developed fullerene–silica materials depends on the applied laser power, sample preparation and pore size of the silica particles. Thus, fullerene–silica serves as an LDI support for mass spectrometric analysis of molecules (<1500 Da). The performance of the fullerene–silica is demonstrated by the mass analysis of variety of small molecules such as carbohydrates, amino acids, peptides, phospholipids and drugs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
926.
A novel film consisting of nitrogen-doped multi-walled carbon nanotubes modified with gold nanoparticles (further denoted as N-MWCNTs/AuNPs) was fabricated and applied for the simultaneous electrochemical analysis of N-acetylcysteine (NAC) and acetaminophen (AC) in phosphate buffer solution (PBS, pH 7.0). The fabricated film exhibits powerful response towards simultaneous analysis of NAC and AC followed by well-separated cyclic voltammetric waves (~440 mV). The oxidation peak currents of NAC and AC increase linearly with their concentrations in the ranges of 0.100–1.510 mM and 0.063–0.190 mM, respectively. The detection limits of N-MWCNTs/AuNPs towards NAC and AC were estimated to be 3.0 and 0.35 μM, respectively. The good catalytic activity, the high detection ability, and the great stability of N-MWCNTs/AuNPs verify that such composite materials are extremely promising for the construction of biosensors.  相似文献   
927.
Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) is a sensitive mass spectrometric technique which utilises acidic materials as matrices for laser energy absorption, desorption and ionisation of analytes. These matrix materials produce background signals particularly in the low-mass range and make the detection and identification of small molecules difficult and nearly impossible. To overcome this problem this paper introduces matrix-free material-enhanced laser desorption/ionisation mass spectrometry (mf-MELDI-MS) for the screening and analysis of small molecules such as carbohydrates. For this purpose, 4,4'-azo-dianiline was immobilised on silica gel enabling the absorption of laser energy sufficient for successful desorption and ionisation of low molecular weight compounds. The particle and pore sizes, the solvent system for suspension and the sample preparation procedures have been optimised. The newly synthesised MELDI material delivered excellent spectra with regard to signal-to-noise ratio and detection sensitivity. Finally, wheat straw degradation products and Salix alba L. plant extracts were analysed proving the high performance and excellent behaviour of the introduced material.  相似文献   
928.
Monolithic silica capillary columns for hydrophilic interaction liquid chromatography (HILIC) were prepared by on-column polymerization of acrylic acid on monolithic silica in a fused silica capillary modified with anchor groups. The products maintained the high permeability (K=5 x 10(-14)m(2)) and provided a plate height (H) of less than 10 microm at optimum linear velocity (u) and H below 20 microm at u=6mm/s for polar solutes including nucleosides and carbohydrates. The HILIC mode monolithic silica capillary column was able to produce 10000 theoretical plates (N) with column dead time (t(0)) of 20s at a pressure drop of 20 MPa or lower. The total performance was much higher than conventional particle-packed HILIC columns currently available. The gradient separations of peptides by a capillary LC-electrospray mass spectrometry system resulted in very different retention selectivity between reversed-phase mode separations and the HILIC mode separations with a peak capacity of ca. 100 in a 10 min gradient time in either mode. The high performance observed with the monolithic silica capillary column modified with poly(acrylic acid) suggests that the HILIC mode can be an alternative to the reversed-phase mode for a wide range of compounds, especially for those of high polarity in isocratic as well as gradient elution.  相似文献   
929.
In this study, ammonium-functionalized MCM-48 (Mobil Composite Material No. 48) was used as an adsorbent to remove nitrate (NO(-)(3)) and monobasic phosphate (H(2)PO(-)(4)) anions from aqueous solutions. The effects of operating conditions such as temperature, adsorbent loading, initial anion concentration, pH, and the presence of competitive ions on the adsorption performances were examined. Results showed that adsorption capacity decreased with increasing temperature. The adsorption capacity increased with adsorbent loading and initial anion concentration. The removal of nitrate was maximum at pH<8, while phosphate removal was maximized at pH 5. The adsorption was almost unaffected by the presence of competitive ions in the case of phosphate anions. However, their presence adversely affected nitrate adsorption. Desorption of both anions was rapidly achieved within 10 min using NaOH at 0.01 M. Regeneration tests showed that the adsorbent retained its capacity after 5 adsorption-desorption cycles.  相似文献   
930.
Protein kinases are key enzymes in many signal transduction pathways, and play a crucial role in cellular proliferation, differentiation, and various cell regulatory processes. However, aberrant function of kinases has been associated with cancers and many other diseases. Consequently, competitive inhibition of the ATP binding site of protein kinases has emerged as an effective means of curing these diseases. Over the past three decades, thousands of protein kinase inhibitors (PKIs) with varying molecular frames have been developed. Large-scale data mining of the Protein Data Bank resulted in a database of 2139 non-redundant high-resolution X-ray crystal structures of PKIs bound to protein kinases. This provided us with a unique opportunity to study molecular determinants for the molecular recognition of PKIs. A chemoinformatic analysis of 2139 PKIs resulted in findings that PKIs are “flat” molecules with high aromatic ring counts and low fractions of sp3 carbon. All but one PKI possessed one or more aromatic rings. More importantly, it was found that the average weighted hydrogen bond count is inversely proportional to the number of aromatic rings. Based on this linear relationship, we put forward the exchange rule of hydrogen bonding interactions and non-bonded π-interactions. Specifically, a loss of binding affinity caused by a decrease in hydrogen bonding interactions is compensated by a gain in binding affinity acquired by an increase in aromatic ring-originated non-bonded interactions (i.e., π–π stacking interactions, CH–π interactions, cation–π interactions, etc.), and vice versa. The very existence of this inverse relationship strongly suggests that both hydrogen bonding and aromatic ring-originated non-bonded interactions are responsible for the molecular recognition of PKIs. As an illustration, two representative PKI–kinase complexes were employed to examine the relative importance of different modes of non-bonded interactions for the molecular recognition of PKIs. For this purpose, two FDA-approved PKI drugs, ibrutinib and lenvatinib, were chosen. The binding pockets of both PKIs were thoroughly examined to identify all non-bonded intermolecular interactions. Subsequently, the strengths of interaction energies between ibrutinib and its interacting residues in tyrosine kinase BTK were quantified by means of the double hybrid DFT method B2PLYP. The resulting energetics for the binding of ibrutinib in tyrosine kinase BTK showed that CH–π interactions and π–π stacking interactions between aromatic rings of the drug and hydrophobic residues in its binding pocket dominate the binding interactions. Thus, this work establishes that, in addition to hydrogen bonding, aromatic rings function as important molecular determinants for the molecular recognition of PKIs. In conclusion, our findings support the following pharmacophore model for ATP-competitive kinase inhibitors: a small molecule features a scaffold of one or more aromatic rings which is linked with one or more hydrophilic functional groups. The former has the structural role of acting as a scaffold and the functional role of participating in aromatic ring-originated non-bonded interactions with multiple hydrophobic regions in the ATP binding pocket of kinases. The latter ensure water solubility and form hydrogen bonds with the hinge region and other hydrophilic residues of the ATP binding pocket.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号