首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   9篇
  国内免费   1篇
化学   178篇
晶体学   4篇
力学   6篇
数学   14篇
物理学   45篇
无线电   52篇
  2024年   5篇
  2023年   5篇
  2022年   11篇
  2021年   20篇
  2020年   10篇
  2019年   16篇
  2018年   16篇
  2017年   10篇
  2016年   14篇
  2015年   10篇
  2014年   19篇
  2013年   30篇
  2012年   21篇
  2011年   16篇
  2010年   5篇
  2009年   9篇
  2008年   11篇
  2007年   14篇
  2006年   16篇
  2005年   11篇
  2004年   14篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1996年   4篇
  1995年   1篇
排序方式: 共有299条查询结果,搜索用时 453 毫秒
141.
Rohit B. Kamble 《合成通讯》2018,48(9):1045-1051
An enantiopure piperidine, a key intermediate for the synthesis of (+)-tofacitinib, has been achieved in high optical purity (98% ee) from readily available crotyl alcohol. The key steps involved is a CoIII(salen)-OAc-catalyzed two stereocentered hydrolytic kinetic resolution of (±)-methyl-3-(oxiran-2-yl)butanoate.  相似文献   
142.
This paper presents the implementation of a modified version of Bayesian relevance vector machine (RVM)‐based compressive sensing method on cognitive radio network with wavelet transform for spectrum hole detection. Bayesian compressive sensing is used in this work to deal with the complexity and uncertainty of the process. The dependency of the Bayesian compressive sensing on the knowledge of noise levels in the measurement has been relaxed through the proposed Bayesian RVM‐based compressive sensing algorithm. This technique recovers the wideband signals even with fewer measurements maintaining considerably good accuracy and speed. Wavelet transform is used in this paper to enable the detection of primary user (PU) even in the low regulated transmission from unlicensed user. The advantage of this approach lies in the fact that it enables the evaluation of all possible hypotheses simultaneously in the global optimization framework. Simulation study is performed to evaluate the efficacy of the proposed technique over the cognitive radio environment. The performance of the proposed technique is compared with the conventional Bayesian approach on the basis of recovery error, recovery time and covariance to verify its superiority.  相似文献   
143.
Phase change materials provide unique reconfigurable properties for photonic applications that mainly arise from their exotic characteristic to reversibly switch between the amorphous and crystalline nonvolatile phases. Optical pulse based reversible switching of nonvolatile phases is exploited in various nanophotonic devices. However, large area reversible switching is extremely challenging and has hindered its translation into a technologically significant terahertz spectral domain. Here, this limitation is circumvented by exploiting the semiconducting nature of germanium antimony telluride (GST) to achieve dynamic terahertz control at picosecond timescales. It is also shown that the ultrafast response can be actively altered by changing the crystallographic phase of GST.  The ease of fabrication of phase change materials allows for the realization of a variable ultrafast terahertz modulator on a flexible platform. The rich properties of phase change materials combined with the diverse functionalities of metamaterials and all-optical ultrafast control enables an ideal platform for design of efficient terahertz communication devices, terahertz neuromorphic photonics, and smart sensor systems.  相似文献   
144.
Wireless sensor network (WSN) consists of densely distributed nodes that are deployed to observe and react to events within the sensor field. In WSNs, energy management and network lifetime optimization are major issues in the designing of cluster-based routing protocols. Clustering is an efficient data gathering technique that effectively reduces the energy consumption by organizing nodes into groups. However, in clustering protocols, cluster heads (CHs) bear additional load for coordinating various activities within the cluster. Improper selection of CHs causes increased energy consumption and also degrades the performance of WSN. Therefore, proper CH selection and their load balancing using efficient routing protocol is a critical aspect for long run operation of WSN. Clustering a network with proper load balancing is an NP-hard problem. To solve such problems having vast search area, optimization algorithm is the preeminent possible solution. Spider monkey optimization (SMO) is a relatively new nature inspired evolutionary algorithm based on the foraging behaviour of spider monkeys. It has proved its worth for benchmark functions optimization and antenna design problems. In this paper, SMO based threshold-sensitive energy-efficient clustering protocol is proposed to prolong network lifetime with an intend to extend the stability period of the network. Dual-hop communication between CHs and BS is utilized to achieve load balancing of distant CHs and energy minimization. The results demonstrate that the proposed protocol significantly outperforms existing protocols in terms of energy consumption, system lifetime and stability period.  相似文献   
145.
In this work, two monomeric magnesium alkyl complexes ( 1 and 2 ) were prepared using bis(phosphino)carbazole framework and among them 1 has been used as a catalyst for hydroboration of alkenes and alkynes with pinacolborane (HBpin). A broad variety of aromatic and aliphatic alkenes and alkynes were efficiently reduced. Anti-Markovnikov regioselective hydroboration of alkenes and alkynes was achieved, which was confirmed by deuterium-labelling experiments. The work represents the first example of the use of magnesium in homogeneous catalytic hydroboration of alkene with broad substrate scope. Experimental mechanistic investigations and DFT calculations provided insights into the reaction mechanism. Finally, the hydroboration protocol was extended to terpenes.  相似文献   
146.
The association of stimuli is an important attribute in the neural basis of learning and memory. While the acquisition and extinction of association through conditioning are well emulated in artificial synaptic devices, the alteration of conditioning efficacy, which enables adaptability in learning, has yet to be demonstrated. A distinctive feature of latent inhibition is that the pre-exposure to a neutral stimulus would suppress its subsequent associative pairing with a biologically salient counterpart. This presents an adaptive advantage in suppressing the learning efficacy of irrelevant stimuli, focusing attention only on relevant cues. Given the significant impact of the regulatory function in biological synapses, an associatively responsive optoelectronic synapse based on oxide Schottky interface capable of emulating latent inhibition is demonstrated. While optical programming based on photo-assisted charge detrapping emulates the biologically salient stimulus, electrical modification acts as neutrally stimulating cues, capable of altering subsequent carrier recombination dynamics. The electrical–optical coupling is leveraged to implement inhibition and facilitation of synaptic plasticity. Subsequently, the adaptability in conditioning to regulate information uptake is demonstrated via latent inhibition. Distinct from conventional optoelectronic synapses, the proposed synaptic device offers significant advantages in adaptability in learning with an electrically tunable optical memory.  相似文献   
147.
148.
149.
Three new degradation impurities of bupropion were characterized through high performance liquid chromatography coupled to photodiode array detection and to time‐of‐flight mass spectrometry. Bupropion was subjected to the ICH prescribed stress conditions. It degraded to seven impurities (I–VII) in alkaline hydrolytic conditions which were optimally resolved on an XTerra C18 column (250 × 4.6 mm, 5 µm) with a ternary mobile phase comprising ammonium formate (20 mm , pH 4.0), methanol and acetonitrile (75:10:15, v/v). The degradation impurities (III–V and VII) were characterized on the basis of mass fragmentation pattern of drug, accurate mass spectral and photodiode array data of the drug and degradation impurities. Compound V was found to be a known degradation impurity [1‐hydroxy‐1‐(3‐chlorophenyl)propan‐2‐one], whereas III, IV and VII were characterized as 2‐hydroxy‐2‐(3′‐chlorophenyl)‐3,5,5‐trimethylmorpholine, (2,4,4‐trimethyl‐1,3‐oxazolidin‐2‐yl)(3‐chlorophenyl)‐methanone and 2‐(3′‐chlorophenyl)‐3,5,5‐trimethylmorphol‐2‐ene, respectively. Compound III was a known metabolite of the drug. This additional information on the degradation impurities can help in the development of a new stability‐indicating assay method to monitor the stability of the drug product during its shelf‐life as well as in development of a drug product with increased shelf‐life. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
150.
In a bio‐inspired approach, polyamine‐mediated mineralization of ZnO was explored to develop an environmentally benign methodology for synthesizing Ag/AgCl/ZnO nanostructures. The assembling properties displayed by the polyamines to create composite structures was utilized to have the nanocomponents effectively interact with each other in a way that is desirable for the application envisaged. The polyamines, which act as a mineralizing agent for ZnO nanoparticles, also facilitate the formation of Ag/AgCl within ZnO under ambient conditions. Thus synthesized Ag/AgCl/ZnO nanostructures represent a multi‐heterojunction system in which the nanocomponents lead in a synergistic way to enhancement in the photocatalytic activity under visible‐light irradiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号