首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   5篇
化学   103篇
力学   2篇
数学   4篇
物理学   24篇
无线电   17篇
  2022年   1篇
  2020年   2篇
  2019年   5篇
  2018年   5篇
  2017年   3篇
  2016年   7篇
  2015年   3篇
  2014年   8篇
  2013年   4篇
  2012年   7篇
  2011年   25篇
  2010年   15篇
  2009年   11篇
  2008年   6篇
  2007年   9篇
  2006年   7篇
  2005年   5篇
  2004年   5篇
  2003年   1篇
  2002年   7篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1987年   1篇
  1982年   2篇
  1980年   1篇
  1925年   1篇
排序方式: 共有150条查询结果,搜索用时 662 毫秒
11.
JPC – Journal of Planar Chromatography – Modern TLC - A new chromogenic spray reagent has been used for detection and identification of carbosulfan in HPTLC. Alkaline hydrolysis of...  相似文献   
12.
Experiments to demonstrate the use of the background-oriented schlieren (BOS) technique in hypersonic impulse facilities are reported. BOS uses a simple optical set-up consisting of a structured background pattern, an electronic camera with a high shutter speed and a high intensity light source. The visualization technique is demonstrated in a small reflected shock tunnel with a Mach 4 conical nozzle, nozzle supply pressure of 2.2 MPa and nozzle supply enthalpy of 1.8 MJ/kg. A 20° sharp circular cone and a model of the MUSES-C re-entry body were tested. Images captured were processed using PIV-style image analysis to visualize variations in the density field. The shock angle on the cone measured from the BOS images agreed with theoretical calculations to within 0.5°. Shock standoff distances could be measured from the BOS image for the re-entry body. Preliminary experiments are also reported in higher enthalpy facilities where flow luminosity can interfere with imaging of the background pattern. A version of this paper was presented at the 25th International Symposium on Shock Waves in Bangalore in July 2005.  相似文献   
13.
New series of (thieno[2,3‐c]pyrazolo‐5‐yl)‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazoles 10a , 10b , 10c and (thieno[2,3‐c]pyrazol‐5‐yl)‐1,3,4‐oxadiazol‐3(2H)‐yl)ethanones 6a , 6b , 6c has been synthesized from thieno[2,3‐c]pyrazole‐5‐carbohydrazide 3 by multistep reaction sequence. (5‐Aryl‐1,3,4‐oxadiazol‐2‐yl)‐1H‐thieno[2,3‐c]pyrazoles 4a , 4b , 4c were also synthesized from thieno[2,3‐c]pyrazole‐5‐carbohydrazide 3 by cyclization with various aromatic carboxylic acids. The hydrazide 3 was obtained by reaction of thieno[2,3‐c]pyrazole‐5‐carboxylate 2 with hydrazine hydrate in good yield, and compound 2 was obtained by the reaction of 5‐chloro‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde 1 and 2‐ethyl thioglycolate in presence of sodium alcoholate in good yield.  相似文献   
14.
Synthesis of ethyl 5‐amino‐4‐cyano‐1‐phenyl‐1H‐pyrazole‐3‐carboxylate 5 has been achieved via abnormal Beckmann rearrangement of o‐chloroaldehyde 1 . Reaction of o‐aminocarbonitrile 5 with concentrated H2SO4 furnished expected o‐aminocarboxamide pyrazole 6 . Key intermediates o‐aminocarbonitrile 5 and o‐aminocarboxamide 6 were successfully utilized for the synthesis of pyrazolopyrimidine derivatives. The replacement of Cl in o‐chlorocarbonitrile 3 with secondary amine furnished new synthon 13 , which was further used for the synthesis of polysubstituted heterocycles. The obtained new products were well characterized by IR, 1H and 13C NMR, and mass spectra.  相似文献   
15.
16.
Photolysis of metalated (Cu and Ni) and free base 2-diazo-3-oxochlorins within a frozen matrix (λ = 457.9 nm, toluene, 80 K) generates a single photointermediate with a hypsochromically shifted electronic absorption spectrum relative to the starting diazochlorins. The appearance of ketene (~2131 cm(-1)) and azete (~1670 cm(-1)) vibrations in infrared absorption and Raman spectra, respectively, identifies this intermediate as resulting from the Wolff rearrangement of the diazochlorins upon N(2) loss. Computational modeling of the vibrational spectra and TDDFT simulation of the electronic transitions of potential photointermediates corroborate this assignment. Isolation and analysis of photoproducts of these diazochlorins formed within n-butanol-doped frozen toluene matrices indicate near exclusive formation of azeteoporphyrins. In sharp contrast, room temperature laser photolysis of these materials yields a mixture of photoproducts deriving from the presence of both carbene and ketene intermediates. Computational modeling of the intramolecular reactivity of the proposed sp(2) carbene intermediate shows exclusive bond insertion to the adjacent phenyl group, and no evidence of Wolff rearrangement. Computational reaction profile analyses reveal that the barrierless Wolff rearrangement proceeds via an out-of-plane carbene electronic configuration that is generated directly during the loss of N(2). The formation of out-of-plane carbene, resulting in the exclusive formation of the observed ketene photointermediate at low temperatures, is consistent with orbital symmetry considerations and by the geometric constraints imposed by the frozen matrix. Combined, this leads to a model showing that azeteoporphyrin formation via the Wolff rearrangement is dependent upon the structural disposition of the adjacent framework, and the specific reaction intermediate formed is very sensitive to this feature.  相似文献   
17.
Pioneering research suggests various modes of cellular therapeutics and biomaterial strategies for myocardial tissue engineering. Despite several advantages, such as safety and improved function, the dynamic myocardial microenvironment prevents peripherally or locally administered therapeutic cells from homing and integrating of biomaterial constructs with the infarcted heart. The myocardial microenvironment is highly sensitive due to the nanoscale cues that it exerts to control bioactivities, such as cell migration, proliferation, differentiation, and angiogenesis. Nanoscale control of cardiac function has not been extensively analyzed in the field of myocardial tissue engineering. Inspired by microscopic analysis of the ventricular organization in native tissue, a scalable in‐vitro model of nanoscale poly(L ‐lactic acid)‐co ‐poly(? ‐caprolactone)/collagen biocomposite scaffold is fabricated, with nanofibers in the order of 594 ± 56 nm to mimic the native myocardial environment for freshly isolated cardiomyocytes from rabbit heart, and the specifically underlying extracellular matrix architecture: this is done to address the specificity of the underlying matrix in overcoming challenges faced by cellular therapeutics. Guided by nanoscale mechanical cues provided by the underlying random nanofibrous scaffold, the tissue constructs display anisotropic rearrangement of cells, characteristic of the native cardiac tissue. Surprisingly, cell morphology, growth, and expression of an interactive healthy cardiac cell population are exquisitely sensitive to differences in the composition of nanoscale scaffolds. It is shown that suitable cell–material interactions on the nanoscale can stipulate organization on the tissue level and yield novel insights into cell therapeutic science, while providing materials for tissue regeneration.  相似文献   
18.
The photodissociation of gaseous benzaldehyde (C6H5CHO) at 193, 248, and 266 nm using multimass ion imaging and step‐scan time‐resolved Fourier‐transform infrared emission techniques is investigated. We also characterize the potential energies with the CCSD(T)/6‐311+G(3df,2p) method and predict the branching ratios for various channels of dissociation. Upon photolysis at 248 and 266 nm, two major channels for formation of HCO and CO, with relative branching of 0.37:0.63 and 0.20:0.80, respectively, are observed. The C6H5+HCO channel has two components with large and small recoil velocities; the rapid component with average translational energy of approximately 25 kJ mol?1 dominates. The C6H6+CO channel has a similar distribution of translational energy for these two components. IR emission from internally excited C6H5CHO, ν3 (v=1) of HCO, and levels v≤2, J≤43 of CO are observed; the latter has an average rotational energy of approximately 13 kJ mol?1 and vibrational energy of approximately 6 kJ mol?1. Upon photolysis at 193 nm, similar distributions of energy are observed, except that the C6H5+HCO channel becomes the only major channel with a branching ratio of 0.82±0.10 and an increased proportion of the slow component; IR emission from levels ν1 (v=1) and ν3 (v=1 and 2) of HCO and v≤2, J≤43 of CO are observed; the latter has an average energy similar to that observed in photolysis at 248 nm. The observed product yields at different dissociation energies are compared to statistical‐theory predicted results based on the computed singlet and triplet potential‐energy surfaces.  相似文献   
19.
Physicochemical properties constitute a key factor for the success of a drug candidate. Whereas many strategies to improve the physicochemical properties of small heterocycle‐type leads exist, complex hydrocarbon skeletons are more challenging to derivatize because of the absence of functional groups. A variety of C H oxidation methods have been explored on the betulin skeleton to improve the solubility of this very bioactive, yet poorly water‐soluble, natural product. Capitalizing on the innate reactivity of the molecule, as well as the few molecular handles present on the core, allowed oxidations at different positions across the pentacyclic structure. Enzymatic oxidations afforded several orthogonal oxidations to chemical methods. Solubility measurements showed an enhancement for many of the synthesized compounds.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号