首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   418篇
  免费   17篇
  国内免费   2篇
化学   252篇
晶体学   5篇
力学   36篇
数学   61篇
物理学   32篇
无线电   51篇
  2023年   3篇
  2022年   16篇
  2021年   10篇
  2020年   13篇
  2019年   13篇
  2018年   13篇
  2017年   9篇
  2016年   21篇
  2015年   6篇
  2014年   20篇
  2013年   35篇
  2012年   30篇
  2011年   28篇
  2010年   14篇
  2009年   18篇
  2008年   25篇
  2007年   22篇
  2006年   18篇
  2005年   13篇
  2004年   19篇
  2003年   17篇
  2002年   16篇
  2001年   6篇
  2000年   2篇
  1999年   7篇
  1998年   10篇
  1997年   3篇
  1996年   6篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1985年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1938年   1篇
  1921年   1篇
排序方式: 共有437条查询结果,搜索用时 0 毫秒
11.
Despite the exceptionally high energy density of lithium metal anodes, the practical application of lithium‐metal batteries (LMBs) is still impeded by the instability of the interphase between the lithium metal and the electrolyte. To formulate a functional electrolyte system that can stabilize the lithium‐metal anode, the solvation behavior of the solvent molecules must be understood because the electrochemical properties of a solvent can be heavily influenced by its solvation status. We unambiguously demonstrated the solvation rule for the solid‐electrolyte interphase (SEI) enabler in an electrolyte system. In this study, fluoroethylene carbonate was used as the SEI enabler due to its ability to form a robust SEI on the lithium metal surface, allowing relatively stable LMB cycling. The results revealed that the solvation number of fluoroethylene carbonate must be ≥1 to ensure the formation of a stable SEI in which the sacrificial reduction of the SEI enabler subsequently leads to the stable cycling of LMBs.  相似文献   
12.
13.
Numerical modeling of multiphase flow generally requires a special procedure at the solid wall in order to be consistent with Young's law for static contact angles. The standard approach in the lattice Boltzmann method, which consists of imposing fictive densities at the solid lattice sites, is shown to be deficient for this task. Indeed, fictive mass transfer along the boundary could happen and potentially spoil the numerical results. In particular, when the contact angle is less than 90 degrees, the deficiencies of the standard model are major. Various videos that demonstrate this behavior are provided (Supporting Information). A new approach is proposed and consists of directly imposing the contact angle at the boundaries in much the same way as Dirichlet boundary conditions are generally imposed. The proposed method is able to retrieve analytical solutions for static contact angles in the case of straight and curved boundaries even when variable density and viscosity ratios between the phases are considered. Although the proposed wetting boundary condition is shown to significantly improve the numerical results for one particular class of lattice Boltzmann model, it is believed that other lattice Boltzmann multiphase schemes could also benefit from the underlying ideas of the proposed method. The proposed algorithm is two‐dimensional, and the D2Q9 lattice is used. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
14.
We study the photon statistics of the field emitted from a semiconductor microcavity containing a quantum well in the non-linear regime. The q-deformed boson concept (quon) allows us to derive an analytical expression of the autocorrelation function in non-resonant pumping. The dependence of the dynamical behavior of the autocorrelation function on the q deformation parameter is discussed.  相似文献   
15.
Three new vinyl ether monomers containing phosphonate moieties were synthesized from transetherification reaction. We showed that the yield was dependent on the spacer length between the vinyl oxy group and the phosphonate moieties: when the spacer is a single methylene side reaction may occur, leading to the formation of acetal compounds. Free‐radical copolymerizations of phosphonate‐containing vinyl ether monomers with maleic anhydride were carried out, leading to alternated copolymers of rather low molecular weights (from 1000 to 7000 g/mol). Both gel permeation chromatography and 31P NMR analyses enhanced possible intramolecular transfer reactions occurring from the phosphonate moieties. Kinetic investigation showed that the electron‐withdrawing character of the phosphonate moieties tends to decrease the rate of copolymerization. Nevertheless, almost complete monomers conversion was reached after 30 min of reaction with dimethyl vinyloxyethylphosphonate (VEC2PMe). Then, radical copolymerization of VEC2PMe with a series of electron‐accepting monomers, that is, dibutyl maleate, dibutylitaconate, itaconic anhydride, butyl maleimide, and methyl maleimide, led to a series of alternated copolymers. From kinetic investigation, we showed that the higher the electron‐accepting effect, the faster the vinyl ether consumption and the higher the molecular weights. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
16.
A new approach of determining dynamic ionic current-voltage characteristic that is due to ion transport phenomenon in the oxide is presented. In this approach, the formulation of I–V characteristics ofmos device can be achieved through the use of the theoretical model of mobile ion distribution in oxides. The used theoretical model of ion distribution is based on the concept that the equilibrium concentration of the ions is obtained when the combined mobilizing forces, namely, thermal diffusion, internal, and external electric fields, become just sufficient to provide necessary activation energy to the ions to surmount the effective potential well. The obtained I–V curve is compared with the experimental curves under varying bias conditions by a slow linear ramp voltage at high temperature (tvs technique). An agreement between the experimental and computed curves provides a support to this method which in turn it gives formulation that is easier to apply for deriving the theoretical I–V characteristic.  相似文献   
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号