首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   886篇
  免费   35篇
  国内免费   4篇
化学   398篇
晶体学   16篇
力学   34篇
数学   51篇
物理学   258篇
无线电   168篇
  2023年   12篇
  2022年   25篇
  2021年   24篇
  2020年   39篇
  2019年   22篇
  2018年   25篇
  2017年   34篇
  2016年   32篇
  2015年   18篇
  2014年   37篇
  2013年   89篇
  2012年   62篇
  2011年   46篇
  2010年   45篇
  2009年   45篇
  2008年   37篇
  2007年   36篇
  2006年   29篇
  2005年   21篇
  2004年   20篇
  2003年   9篇
  2002年   14篇
  2001年   8篇
  1999年   5篇
  1998年   7篇
  1997年   8篇
  1996年   7篇
  1995年   5篇
  1994年   9篇
  1993年   19篇
  1992年   12篇
  1991年   8篇
  1990年   3篇
  1989年   5篇
  1988年   8篇
  1987年   7篇
  1986年   6篇
  1985年   5篇
  1984年   6篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1980年   8篇
  1979年   9篇
  1978年   7篇
  1976年   6篇
  1974年   3篇
  1973年   4篇
  1967年   3篇
  1962年   2篇
排序方式: 共有925条查询结果,搜索用时 15 毫秒
21.
Multiwalled carbon nanotubes (MWCNTs) are elongated, hollow cylindrical nanotubes made of sp2 carbon. MWCNTs have attracted significant attention in the area of drug delivery due to their high drug-loading capacity and large surface area. Furthermore, they can be linked to bioactive ligands molecules via covalent and noncovalent bonds that allow for the targeted delivery of anticancer drugs such as doxorubicin. The majority of methodologies reported for the functionalization of MWCNTs for drug delivery are quite complex and use expensive linkers and ligands. In the present study, we report a simple, cost-effective approach for functionalizing MWCNTs with the carbohydrate ligands, galactose (GA), mannose (MA) and lactose (LA), using lysine as a linker. The doxorubicin (Dox)-loaded functionalized MWCNTs were characterized using FT-IR, NMR, Raman, XRD and FE-SEM. The drug–loaded MWCNTs were evaluated for drug loading, drug release and cell toxicity in vitro, in breast cancer cells. The results indicated that the carbohydrate-modified lysinated MWCNTs had greater Dox loading capacity, compared to carboxylated MWCNTs (COOHMWCNTs) and lysinated MWCNTs (LyMWCNTs). In vitro drug release experiments indicated that the carbohydrate functionalized LyMWCNTs had higher Dox release at pH 5.0, compared to the physiological pH of 7.4, over 120 h, indicating that they are suitable candidates for targeting the tumor microenvironment as a result of their sustained release profile of Dox. Doxorubicin-loaded galactosylated MWCNTs (Dox-GAMWCNTs) and doxorubicin loaded mannosylated MWCNTs (Dox-MAMWCNTs) had greater anticancer efficacy and cellular uptake, compared to doxorubicin–loaded lactosylated MWCNTs (Dox-LAMWCNTs) and pure Dox, in MDA-MB231 and MCF7 breast cancer cells. However, neither the ligand conjugated multiwall blank carbon nanotubes (GAMWCNTs, MAMWCNTs and LAMWCNTs) nor the lysinated multiwalled blank carbon nanotubes produced significant toxicity in the normal cells. Our results suggest that sugar-tethered multiwalled carbon nanotubes, especially the galactosylated (Dox-GAMWCNTs) and mannosylated (Dox-MAMWCNTs) formulations, may be used to improve the targeted delivery of anticancer drugs to breast cancer cells.  相似文献   
22.
The concerted interplay between reactive nuclear and electronic motions in molecules actuates chemistry. Here, we demonstrate that out-of-plane torsional deformation and vibrational excitation of stretching motions in the electronic ground state modulate the charge-density distribution in a donor-bridge-acceptor molecule in solution. The vibrationally-induced change, visualised by transient absorption spectroscopy with a mid-infrared pump and a visible probe, is mechanistically resolved by ab initio molecular dynamics simulations. Mapping the potential energy landscape attributes the observed charge-coupled coherent nuclear motions to the population of the initial segment of a double-bond isomerization channel, also seen in biological molecules. Our results illustrate the pivotal role of pre-twisted molecular geometries in enhancing the transfer of vibrational energy to specific molecular modes, prior to thermal redistribution. This motivates the search for synthetic strategies towards achieving potentially new infrared-mediated chemistry.

Channelling vibrational excitation energy to achieve ground-state charge-transfer (CT)-assisted isomerization in a donor-bridge-acceptor molecule in solution.  相似文献   
23.
Cadmium telluride thin films have been found to exhibit polytypism. The polytypes are formed when the as grown amorphous CdTe thin films undergo amorphous to crystalline transformation. The transformed single crystal regions correspond to different polytypes. Besides the well known zinc blende type 3 C cubic phase and less often found wurtzite type 2 H phase, four new polytypes (5 H, 6 H, 6 R and 15 R) the only ones known to-date have been found in the present investigation. In addition to the new polytypes, a new structural variant has also been found. This has the same ‘c’ parameter as that of the 2 H phase but has its ‘a’ lattice parameter as ‘a0 \documentclass{article}\pagestyle{empty}\begin{document}$ a_{\rm o} \sqrt {3} $\end{document}’ (a0 being the common lattice parameter of the polytypes). A feasible mechanism making the formation of polytypes intelligible has been suggested.  相似文献   
24.
25.
When a voltage pulse is applied under forward biased condition to a spin-coated bilayer organic light-emitting diode (OLED), then initially the electroluminescence (EL) intensity appearing after a delay time, increases with time and later on it attains a saturation value. At the end of the voltage pulse, the EL intensity decreases with time, attains a minimum intensity and then it again increases with time, attains a peak value and later on it decreases with time. For the OLEDs, in which the lifetime of trapped carriers is less than the decay time of the EL occurring prior to the onset of overshoot, the EL overshoot begins just after the end of voltage pulse. The overshoot in spin-coated bilayer OLEDs is caused by the presence of an interfacial layer of finite thickness between hole and electron transporting layers in which both transport molecules coexist, whereby the interfacial energy barrier impedes both hole and electron passage. When a voltage pulse is applied to a bilayer OLED, positive and negative space charges are established at the opposite faces of the interfacial layer. Subsequently, the charge recombination occurs with the incoming flux of injected carriers of opposite polarity. When the voltage is turned off, the interfacial charges recombine under the action of their mutual electric field. Thus, after switching off the external voltage the electrons stored in the interface next to the anode cell compartment experience an electric field directed from cathode to anode, and therefore, the electrons move towards the cathode, that is, towards the positive space charge, whereby electron–hole recombination gives rise to luminescence. The EL prior to onset of overshoot is caused by the movement of electrons in the electron transporting states, however, the EL in the overshoot region is caused by the movement of detrapped electrons. On the basis of the rate equations for the detrapping and recombination of charge carriers accumulated at the interface expressions are derived for the transient EL intensity I, time tm and intensity Im corresponding to the peak of EL overshoot, total EL intensity It and decay of the intensity of EL overshoot. In fact, the decay prior to the onset of EL overshoot is the decay of number of electrons moving in the electron transporting states. The ratio Im/Is decreases with increasing value of the applied pulse voltage because Im increases linearly with the amplitude of applied voltage pulse and Is increases nonlinearly and rapidly with the increasing amplitude of applied voltage pulse. The lifetime τt of electrons at the interface decreases with increasing temperature whereby the dependence of τt on temperature follows Arrhenius plot. This fact indicates that the detrapping involves thermally-assisted tunneling of electrons. Using the EL overshoot in bilayer OLEDs, the lifetime of the charge carriers at the interface, recombination time of charge carriers, decay time of the EL prior to onset of overshoot, and the time delay between the voltage pulse and onset time of the EL overshoot can be determined. The intense EL overshoot of nanosecond or shorter time duration may be useful in digital communication, and moreover, the EL overshoot gives important information about the processes involving injection, transport and recombination of charge carriers. The criteria for appearance of EL overshoot in bilayer OLEDs are explored. A good agreement is found between the theoretical and experimental results.  相似文献   
26.
Two-dimensional discrete cosine transforms are used in the core transformations in all profiles of the H.264/Advanced video coding (AVC) standard. In this paper, implementing the resource sharing of high throughput 4 × 4 and 8 × 8 forward and inverse integer transforms for high definition H.264 is presented. It is shown that the 4 × 4 forward/inverse transform can be obtained from 8 × 8 forward/inverse transform using selective data input and data arrangement at intermediate stages. Fast 8 × 8 forward and inverse transform is implemented using matrix decomposition and matrix operation such as Kronecker product and direct sum. The proposed implementation does not require any transpose memory and has a dual clocked pipeline structure. Compared with existing designs, the gate count is reduced by 27.7% in the proposed design. The maximum operating frequency of the proposed system is approx. 1.3 GHz, while the throughput is 7 G and 18.7 G pixels/s for 4 × 4 and 8 × 8 forward integer transforms, respectively. The proposed design can be used for real time H.264/AVC high definition processing owing to its high throughput and low hardware cost.  相似文献   
27.
A highly selective and sensitive electrochemical sensor has been developed by modification of a glassy carbon electrode (GCE) with graphene (GRP) for quantification of Rizatriptan. The significant increase of the peak current and the improvement of the oxidation peak potential indicate that the electrochemical sensor facilitates the electron transfer of Rizatriptan. The oxidation peak current was proportional to the Rizatriptan concentration in the range from 100 to 600 µg/mL with detection (LOD) and quantification limit (LOQ) of 36.52 and 121.73 µg/mL, respectively. The developed method was successfully employed for quantification of Rizatriptan in pharmaceutical formulations. The sensor shows great promise for simple, sensitive and quantitative detection of Rizatriptan.  相似文献   
28.
Two simple and sensitive spectrophotometric methods have been developed for analysis of the antipsychotic drug olanzapine in pharmaceuticals. Method A is based on liberation of iodine by reaction between the drug and potassium iodate, followed by reaction with leuco crystal violet (LCV), the color of oxidized LCV being measured at 598 nm. Method B is based on oxidation of olanzapine with chloramine-T (CAT) in acidic medium, the unconsumed CAT being determined with rhodamine B, measuring the absorbance at 550 nm. Calibration graphs were linear over the ranges of 0.05–2.0 and 0.1–1.6 μg mL?1 olanzapine for method A and B, respectively. The molar absorptivity, Sandell’s sensitivity, detection limit, and quantitation limit were found to be 1.59 × 105, 0.00132, 0.038, and 0.117, respectively, for method A and 0.953 × 105, 0.00221, 0.064, and 0.192, respectively, for method B. The optimum conditions and other analytical parameters were evaluated. The proposed methods have been applied successfully for analysis of olanzapine in pure form and its dosage forms, and no interference was observed from common excipients present in pharmaceutical formulations.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号