首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28518篇
  免费   4501篇
  国内免费   3682篇
化学   14350篇
晶体学   328篇
力学   1203篇
综合类   225篇
数学   2319篇
物理学   7324篇
无线电   10952篇
  2024年   147篇
  2023年   675篇
  2022年   1006篇
  2021年   1149篇
  2020年   1222篇
  2019年   1155篇
  2018年   975篇
  2017年   1047篇
  2016年   1222篇
  2015年   1570篇
  2014年   1754篇
  2013年   2251篇
  2012年   2516篇
  2011年   2538篇
  2010年   2076篇
  2009年   2004篇
  2008年   2051篇
  2007年   1798篇
  2006年   1676篇
  2005年   1379篇
  2004年   997篇
  2003年   819篇
  2002年   815篇
  2001年   603篇
  2000年   554篇
  1999年   426篇
  1998年   283篇
  1997年   247篇
  1996年   238篇
  1995年   222篇
  1994年   188篇
  1993年   166篇
  1992年   129篇
  1991年   110篇
  1990年   100篇
  1989年   81篇
  1988年   78篇
  1987年   39篇
  1986年   54篇
  1985年   50篇
  1984年   32篇
  1983年   30篇
  1982年   27篇
  1981年   18篇
  1980年   21篇
  1979年   19篇
  1978年   21篇
  1977年   11篇
  1973年   8篇
  1971年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The bioorthogonality of tetrazole photoclick chemistry has been reassessed. Upon photolysis of a tetrazole, the highly reactive nitrile imine formed undergoes rapid nucleophilic reaction with a variety of nucleophiles present in a biological system, along with the expected cycloaddition with alkenes. The alternative use of the tetrazole photoclick reaction was thus explored: tetrazoles were incorporated into Bodipy and Acedan dyes, providing novel photo‐crosslinkers with one‐ and two‐photon fluorescence Turn‐ON properties that may be developed into protein‐detecting biosensors. Further introduction of these photo‐activatable, fluorogenic moieties into staurosporine resulted in the corresponding probes capable of photoinduced, no‐wash imaging of endogenous kinase activities in live mammalian cells.  相似文献   
992.
p53 is a tumor‐suppressor protein related to the cell cycle and programmed cell apoptosis. Herein, dual‐targeting nanovesicles are designed for in situ imaging of intracellular wild‐type p53 (WTp53) and mutant p53 (MUp53). Nanovesicle‐encapsulated plasmonic gold nanoparticles (AuNPs) were functionalized with consensus DNA duplexes, and a fluorescein isothiocyanate (FITC)‐marked anti‐MUp53 antibody was conjugated to the nanovesicle surface. After entering the cytoplasm, the released AuNPs aggregated through recognition of WTp53 and the double‐stranded DNA. The color changes of AuNPs were observed using dark‐field microscopy, which showed the intracellular WTp53 distribution. The MUp53 location was detected though the immunological recognition between FITC‐labeled anti‐MUp53 and MUp53. Thus, a one‐step incubation method for the in situ imaging of intracellular WTp53 and MUp53 was obtained; this was used to monitor the p53 level under a drug treatment.  相似文献   
993.
A homologous nanoparticle library was synthesized in which gold nanoparticles were coated with polyethylene glycol, whereby the diameter of the gold cores, as well as the thickness of the shell of polyethylene glycol, was varied. Basic physicochemical parameters of this two‐dimensional nanoparticle library, such as size, ζ‐potential, hydrophilicity, elasticity, and catalytic activity ,were determined. Cell uptake of selected nanoparticles with equal size yet varying thickness of the polymer shell and their effect on basic structural and functional cell parameters was determined. Data indicates that thinner, more hydrophilic coatings, combined with the partial functionalization with quaternary ammonium cations, result in a more efficient uptake, which relates to significant effects on structural and functional cell parameters.  相似文献   
994.
Most simple magnesium salts tend to passivate the Mg metal surface too quickly to function as electrolytes for Mg batteries. In the present work, an electroactive salt [Mg(THF)6][AlCl4]2 was synthesized and structurally characterized. The Mg electrolyte based on this simple mononuclear salt showed a high Mg cycling efficiency, good anodic stability (2.5 V vs. Mg), and high ionic conductivity (8.5 mS cm?1). Magnesium/sulfur cells employing the as‐prepared electrolyte exhibited good cycling performance over 20 cycles in the range of 0.3–2.6 V, thus indicating an electrochemically reversible conversion of S to MgS without severe passivation of the Mg metal electrode surface.  相似文献   
995.
996.
Three new compounds [Mn(H2O)2(bimb)2(H3SiW12O40)2](bimb)4 (1), [Zn2(bimb)4(H2O)4][SiW12O40] (2), and [Ni2(bimb)4(H2O)4][SiW12O40] (3) (bimb = 1,3-bis(1-imidazoly)benzene) have been synthesized under the same hydrothermal reaction except for tuning the metal cations (Mn2+, Zn2+, and Ni2+). Structural characterizations show that the three compounds possess distinct structural motives. Compound 1 displays a supramolecular one-dimensional (1 D) chain formed by π···π interactions that occur among the almost parallel bimb ligands from adjacent [Mn(H2O)2(bimb)2(SiW12O40)2] dimers. Compound 2 shows a supramolecular two-dimensional (2D) layer achieved by intermolecular (C–H···O) hydrogen bondings between the Zn2(bimb)4 molecular loops and the SiW12 anions. Compound 3 also exhibits a supramolecular 2D layer, but it is different from 2, which is generated by the π···π interactions among adjacent 1D polymeric chains. The distinct structural features of the three compounds suggest that the metal cations should play a significant role in the process of assembly. Additionally, the electrochemical properties of compounds 13 have been investigated, and the results indicate that compounds 13 possess excellent electrocatalytic activity toward reduction of both iodated and nitrite molecules.  相似文献   
997.
Indoles and azaindoles are among the most important heterocycles because of their prevalence in nature and their broad utility in pharmaceutical industry. Reported herein is an unprecedented noble‐metal‐ and oxidant‐free electrochemical method for the coupling of (hetero)arylamines with tethered alkynes to synthesize highly functionalized indoles, as well as the more challenging azaindoles.  相似文献   
998.
G‐protein‐coupled receptors (GPCRs) are involved in a wide range of physiological processes, and they have attracted considerable attention as important targets for developing new medicines. A central and largely unresolved question in drug discovery, which is especially relevant to GPCRs, concerns ligand selectivity: Why do certain molecules act as activators (agonists) whereas others, with nearly identical structures, act as blockers (antagonists) of GPCRs? To address this question, we employed all‐atom, long‐timescale molecular dynamics simulations to investigate how two diastereomers (epimers) of dihydrofuroaporphine bind to the serotonin 5‐HT1A receptor and exert opposite effects. By using molecular interaction fingerprints, we discovered that the agonist could mobilize nearby amino acid residues to act as molecular switches for the formation of a continuous water channel. In contrast, the antagonist epimer remained firmly stabilized in the binding pocket.  相似文献   
999.
We report a new mechanistic strategy for controlling and modifying the photon emission of lanthanides in a core–shell nanostructure by using interfacial energy transfer. By taking advantage of this mechanism with Gd3+ as the energy donor, we have realized efficient up‐ and down‐converted emissions from a series of lanthanide emitters (Eu3+, Tb3+, Dy3+, and Sm3+) in these core–shell nanoparticles, which do not need a migratory host sublattice. Moreover, we have demonstrated that the Gd3+‐mediated interfacial energy transfer, in contrast to energy migration, is the leading process contributing to the photon emission of lanthanide dopants for the NaGdF4@NaGdF4 core–shell system. Our finding suggests a new direction for research into better control of energy transfer at the nanometer length scale, which would help to stimulate new concepts for designing and improving photon emission of the lanthanide‐based luminescent materials.  相似文献   
1000.
A sandwich FAU–LTA zeolite dual‐layer membrane has been developed and used as a catalytic membrane reactor for the synthesis of dimethyl ether (DME). In the top H‐FAU layer with mild acidity, methanol is dehydrated to DME. The other reaction product, water, is removed in situ through a hydrophilic Na‐LTA layer, which is located between the porous alumina support and the H‐FAU top layer. The combination of mild acidity with the continuous removal of water results in high methanol conversion (90.9 % at 310 °C) and essentially 100 % DME selectivity. Furthermore, owing to the selective and continuous removal of water through the Na‐LTA membrane, catalyst deactivation can be effectively suppressed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号