首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   19篇
  国内免费   5篇
化学   198篇
晶体学   1篇
力学   4篇
数学   27篇
物理学   54篇
无线电   49篇
  2024年   2篇
  2023年   3篇
  2022年   21篇
  2021年   33篇
  2020年   19篇
  2019年   24篇
  2018年   21篇
  2017年   14篇
  2016年   16篇
  2015年   23篇
  2014年   15篇
  2013年   23篇
  2012年   20篇
  2011年   22篇
  2010年   10篇
  2009年   13篇
  2008年   14篇
  2007年   8篇
  2006年   4篇
  2005年   4篇
  2003年   2篇
  2002年   3篇
  2000年   4篇
  1999年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
排序方式: 共有333条查询结果,搜索用时 46 毫秒
121.
One of the main problems of statistical physics is to describe all Gibbs measures corresponding to a given Hamiltonian. It is well known that such measures form a nonempty convex compact subset in the set of all probability measures. The purpose of this article is to investigate phase diagram and extreme Gibbs measures of the Ising model on a Cayley tree in the presence of competing binary and ternary interactions.  相似文献   
122.
Species of Mycobacteriaceae cause disease in animals and humans, including tuberculosis and leprosy. Individuals infected with organisms in the Mycobacterium tuberculosis complex (MTBC) or non-tuberculous mycobacteria (NTM) may present identical symptoms, however the treatment for each can be different. Although the NTM infection is considered less vital due to the chronicity of the disease and the infrequency of occurrence in healthy populations, diagnosis and differentiation among Mycobacterium species currently require culture isolation, which can take several weeks. The use of volatile organic compounds (VOCs) is a promising approach for species identification and in recent years has shown promise for use in the rapid analysis of both in vitro cultures as well as ex vivo diagnosis using breath or sputum. The aim of this contribution is to analyze VOCs in the culture headspace of seven different species of mycobacteria and to define the volatilome profiles that are discriminant for each species. For the pre-concentration of VOCs, solid-phase micro-extraction (SPME) was employed and samples were subsequently analyzed using gas chromatography–quadrupole mass spectrometry (GC-qMS). A machine learning approach was applied for the selection of the 13 discriminatory features, which might represent clinically translatable bacterial biomarkers.  相似文献   
123.
Hyperpolarized magnetic resonance spectroscopy enables quantitative, non‐radioactive, real‐time measurement of imaging probe biodistribution and metabolism in vivo. Here, we investigate and report on the development and characterization of hyperpolarized acetylsalicylic acid (aspirin) and its use as a nuclear magnetic resonance (NMR) probe. Aspirin derivatives were synthesized with single‐ and double‐13C labels and hyperpolarized by dynamic nuclear polarization with 4.7 % and 3 % polarization, respectively. The longitudinal relaxation constants (T1) for the labeled acetyl and carboxyl carbonyls were approximately 30 seconds, supporting in vivo imaging and spectroscopy applications. In vitro hydrolysis, transacetylation, and albumin binding of hyperpolarized aspirin were readily monitored in real time by 13C‐NMR spectroscopy. Hyperpolarized, double‐labeled aspirin was well tolerated in mice and could be observed by both 13C‐MR imaging and 13C‐NMR spectroscopy in vivo.  相似文献   
124.
Hyperpolarized magnetic resonance spectroscopy enables quantitative, non‐radioactive, real‐time measurement of imaging probe biodistribution and metabolism in vivo. Here, we investigate and report on the development and characterization of hyperpolarized acetylsalicylic acid (aspirin) and its use as a nuclear magnetic resonance (NMR) probe. Aspirin derivatives were synthesized with single‐ and double‐13C labels and hyperpolarized by dynamic nuclear polarization with 4.7 % and 3 % polarization, respectively. The longitudinal relaxation constants (T1) for the labeled acetyl and carboxyl carbonyls were approximately 30 seconds, supporting in vivo imaging and spectroscopy applications. In vitro hydrolysis, transacetylation, and albumin binding of hyperpolarized aspirin were readily monitored in real time by 13C‐NMR spectroscopy. Hyperpolarized, double‐labeled aspirin was well tolerated in mice and could be observed by both 13C‐MR imaging and 13C‐NMR spectroscopy in vivo.  相似文献   
125.
126.
In the present work, we observe the dynamical behavior of nonlinear and supernonlinear traveling waves for Sharma–Tasso–Olver (STO) equation. Exact solutions are derived using \({1}/{G^{^{\prime }}}\) expansion and modified Kudryashov methods. The wave transformation is used to transform STO equation into an ordinary differential equation. Combining Runge–Kutta fourth-order and Fourier spectral technique, we use a mixed scheme for the numerical study of STO equation. Since spectral methods expand the solution in trigonometric series resulting into higher-order technique and Runge–Kutta produces improved accuracy, we extract these qualities for a mixed scheme. Results so produced are presented graphically which provide a useful information about the dynamical behavior. Bifurcation behavior of nonlinear and supernonlinear traveling waves of STO equation is studied with the help of bifurcation theory of planar dynamical systems. It is observed that STO equation supports nonlinear solitary wave, periodic wave, shock wave, stable oscillatory wave and most important supernonlinear periodic wave.  相似文献   
127.
Role of quantum interference in the origin of higher-order nonclassical characteristics of radiation field has been probed vis-à-vis a discrete and a continuous superposition of coherent states. Specifically, the possibilities of observing higher-order nonclassical properties (e.g., higher-order antibunching (HOA), higher-order sub-Poissonian photon statistics (HOSPS), higher-order squeezing (HOS) of Hong-Mandel type and Hillery type) have been investigated using a shifted symmetric cat state that reduces to Yurke-Stoler, even and odd coherent states at various limits. This shifted symmetric cat state which can be viewed as a discrete superposition of coherent states is found to show HOA and HOSPS. Similarly, higher-order nonclassical properties of a one-dimensional continuous superposition of coherent states is also studied here. The investigation has revealed the existence of HOS and HOSPS in the one-dimensional continuous superposition of coherent states studied here. Effect of non-Gaussianity inducing operations (e.g., photon addition and addition followed by subtraction) on these superposition states have also been investigated. Finally, some comparisons have been made between the higher-order nonclassical properties of discrete and continuous superposition of coherent states.  相似文献   
128.
Parallel magnetic resonance imaging (MRI) (pMRI) uses multiple receiver coils to reduce the MRI scan time. To accelerate the data acquisition process in MRI, less amount of data is acquired from the scanner which leads to artifacts in the reconstructed images. SENSitivity Encoding (SENSE) is a reconstruction algorithm in pMRI to remove aliasing artifacts from the undersampled multi coil data and recovers fully sampled images. The main limitation of SENSE is computing inverse of the encoding matrix. This work proposes the inversion of encoding matrix using Jacobi singular value decomposition (SVD) algorithm for image reconstruction on GPUs to accelerate the reconstruction process. The performance of Jacobi SVD is compared with Gauss–Jordan algorithm. The simulations are performed on two datasets (brain and cardiac) with acceleration factors 2, 4, 6 and 8. The results show that the graphics processing unit (GPU) provides a speed up to 21.6 times as compared to CPU reconstruction. Jacobi SVD algorithm performs better in terms of acceleration in reconstructions on GPUs as compared to Gauss–Jordan method. The proposed algorithm is suitable for any number of coils and acceleration factors for SENSE reconstruction on real time processing systems.  相似文献   
129.
130.
We present a general analysis on non-static axial system with dissipative shear-free anisotropic fluid using polynomial inflationary f(R) model.We study the effects of dissipation on the dynamics of geodesic matter distribution.This leads the system either to rotation-free or expansion-free but not both simultaneously under geodesic condition.It is found that the system preserves its symmetry in both cases.For the rotation-free case,when there is no dissipation and Ricci scalar is constant,the axial system reduces to FRW universe model.This is exactly the same result obtained in general relativity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号