首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   24篇
  国内免费   4篇
化学   228篇
晶体学   4篇
力学   1篇
数学   6篇
物理学   68篇
无线电   57篇
  2024年   3篇
  2023年   8篇
  2022年   24篇
  2021年   18篇
  2020年   33篇
  2019年   22篇
  2018年   23篇
  2017年   26篇
  2016年   31篇
  2015年   16篇
  2014年   31篇
  2013年   37篇
  2012年   32篇
  2011年   22篇
  2010年   11篇
  2009年   12篇
  2008年   8篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
排序方式: 共有364条查询结果,搜索用时 0 毫秒
361.
Regenerative medicine aims to restore damaged cells, tissues, and organs, for which growth factors are vital to stimulate regenerative cellular transformations. Major advances have been made in growth factor engineering and delivery like the development of robust peptidomimetics and controlled release matrices. However, their clinical applicability remains limited due to their poor stability in the body and need for careful regulation of their local concentration to avoid unwanted side-effects. In this study, a strategy to overcome these limitations is explored using engineered living materials (ELMs), which contain live microorganisms that can be programmed with stimuli-responsive functionalities. Specifically, the development of an ELM that releases a pro-angiogenic protein in a light-regulated manner is described. This is achieved by optogenetically engineering bacteria to synthesize and secrete a vascular endothelial growth factor peptidomimetic (QK) linked to a collagen-binding domain. The bacteria are securely encapsulated in bilayer hydrogel constructs that support bacterial functionality but prevent their escape from the ELM. In situ control over the release profiles of the pro-angiogenic protein using light is demonstrated. Finally, it is shown that the released protein is able to bind collagen and promote angiogenic network formation among vascular endothelial cells, indicating the regenerative potential of these ELMs.  相似文献   
362.
363.
Fifth-generation (5G) networks deal with high-frequency data rates, ultra-low latency, more reliability, massive network capacity, more availability, and a more uniform user experience. To validate the high-frequency rates, 5G networks engage beam searching operation. By adopting a beam searching state between the short and long sleep, one can reduce the system's delay. The energy consumption of user equipment (UE) in 5G networks is much higher than in the 4G networks. To reduce the energy consumption and increase the energy saving in UE, Long-Term Evolution (LTE)-5G networks adopt the discontinuous reception (DRX) scheme with a fixed number of short sleep. LTE-DRX without beam search operation (i.e., beam alignment) cannot work in 5G networks. Hence, keeping this scenario in mind, we have modeled a new modified directional discontinuous reception (MD-DRX) mechanism for LTE-5G networks. The MD-DRX mechanism captures the behavior of a beam searching, an inactive, an active, a long sleep, an ON, and a short sleep states. The short sleep state consists of a maximum M short sleep. To get the optimal energy saving and energy consumption (i.e., energy efficiency) from the MD-DRX mechanism, it is required to check the system's throughput. The trade-off between energy saving/energy consumption and throughput will provide the system's optimal energy saving and optimal energy consumption. In this paper, we have obtained the system's optimal energy saving and throughput by optimizing the maximum short sleep and short sleep duration. To get the energy efficiency for LTE-5G networks, the trade-off between average energy consumption/energy saving and throughput is shown.  相似文献   
364.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号