首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   1篇
化学   19篇
数学   7篇
物理学   5篇
无线电   30篇
  2024年   1篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   5篇
  1990年   1篇
  1989年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
排序方式: 共有61条查询结果,搜索用时 31 毫秒
41.
The relationships between redundant logic and don't care conditions in combinational circuits are well known. Redundancies in a combinational circuit can be explicitly identified using test generation algorithms or implicitly eliminated by specifying don't cares for each gate in the combinational network and minimizing the gates, subject to the don't care conditions.In this article, we explore the relationships between redundant logic and don't care conditions in sequential circuits. Stuck-at faults in a sequential circuit may be testable in the combinational sense, but may be redundant because they do not alter the terminal behavior of a nonscan sequential machine. These sequential redundancies result in a faulty State Transition Graph (STG) that is equivalent to the STG of the true machine.We present a classification of redundant faults in sequential circuits composed of single or interacting finite state machines. For each of the different classes of redundancies, we define don't care sets which if optimally exploited will result in the implicit elimination of any such redundancies in a given circuit. We present systematic methods for the exploitation of sequential don't cares that correspond to sequences of vectors that never appear in cascaded or interacting sequential circuits. Using these don't care sets in an optimal sequential synthesis procedure of state minimization, state assignment, and combinational logic optimization results in fully testable lumped or interacting finite state machines. We present experimental results which indicate that medium-sized irredundant sequential circuits can be synthesized with no area overhead and within reasonable CPU times by exploiting these don't cares.  相似文献   
42.
Because of its inherent complexity, the problem of automatic test pattern generation for multiple stuck-at faults (multifaults) has been largely ignored. Recently, the observation that multifault testability is retained by algebraic factorization demonstrated that single fault (and therefore multifault) vector sets for two-level circuits could give complete multifault coverage for multilevel circuits constructed by algebraic factorization. Unfortunately, in using this method the vector set size can be much larger than what is really required to achieve multifault coverage, and the approach has some limitations in its applicability.In this article we first present a multifault test generation and compaction strategy for algebraically factored multilevel circuits, synthesized from two-level representations. We give a basic sufficiency condition for multifault testability of such networks.We next focus on the relationship between hazard-free robust path-delay-fault testability and multifault testability. We show that the former implies the latter for arbitrary multilevel circuits. This allows the use of previously developed composition rules that maintain path-delay-fault testability for the synthesis of multifault testable circuits.We identify a class of multiplexor-based networks and prove an interesting property of such networks—if the networks are fully single stuck-at fault testable, or made fully single stuck-at fault testable, they are completely multifault testable. We give a multifault test generation and compaction algorithm for such networks.We provide experimental results which indicate that a compacted multifault test set derived using the above strategies can be significantly smaller than the test set derived using previously proposed procedures. These results also indicate the substantially wider applicability of our procedures, as compared to previous techniques.  相似文献   
43.
For sequential circuit path delay testing, we propose a new update rule for state variables whereby flipflops are updated with their correct values provided they are destinations of at least one robustly activated path delay fault. Existing algorithms in the literature, for robust fault simulation and test generation, assign unknown values to off-path latches that have non-steady signals at their inputs in the previous vector. Such procedures are pessimistic and predict low fault coverages. They also have an adverse effect on the execution time of fault simulation especially if the circuit has a large number of active paths. The proposed update rule avoids these problems and yet guarantees robustness.  相似文献   
44.
We describe a method of polynomial simulation to calculate switching activities in a general-delay logic circuit. This method is a generalization of the exact signal probability evaluation method due to Parker and McCluskey, which has been extended to handle temporal correlation and arbitrary transport delays. The method can target both combinational and sequential circuits.Our method is parameterized by a single parameter l, which determines the speed-accuracy tradeoff. l indicates the depth in terms of logic levels over which spatial signal correlation is taken into account. This is done by only taking into account reconvergent paths whose length is at most l. The rationale is that ignoring spatial correlation for signals that reconverge after many levels of logic introduces negligible error. When l = L, where L is the total number of levels of logic in the circuit, the method will produce the exact switching activity under a zero delay model, taking into account all internal correlation.We present results that show that the error in the switching activity and power estimates is very small even for small values of l. In fact, for most of the examples, power estimates with l = 0 are within 5% of the exact. However, this error can be higher than 20% for some examples. More robust estimates are obtained with l = 2, providing a good compromise between speed and accuracy.  相似文献   
45.
A network is cycle balanced if the product of the weights (nonzero real numbers) of the lines of every cycle in it is positive. In this paper, we prove that a network D is cycle balanced if and only if its adjacency matrix is isospectral with its nonnegative counterpart. Consequent to this theorem is an analogous criterion for structural balance in sigraphs (abbreviation for “signed graphs”) as also for cycle balance in signed digraphs. These criteria establish in a natural way a wide scope for cospectrality considerations in the classes of signed digraphs and sigraphs.  相似文献   
46.
The peptide library present in the venom of the piscivorous marine snail Conus achatinus has been probed using a combination of mass spectrometry and cDNA sequencing methods. Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) analysis, before and following global reduction/alkylation of peptide mixtures, permits the rapid classification of individual components on the basis of the number of disulfide bonds. Mass fingerprinting and the reverse phase HPLC retention times permit a further deconvolution of the library in terms of peptide size and hydrophobicity. Sequencing of cDNA derived using O-superfamily specific primers yielded five complete conotoxin precursor sequences, ranging in polypeptide length from 75-87 residues containing six Cys residues at the C-terminus. Sequence analysis permits classification of the five putative mature peptides (Ac 6.1 to Ac 6.5) as delta, omega, and omega-like conotoxins. The presence of these predicted peptides in crude venom was established by direct matrix assisted laser desorption ionization tandem mass spectrometry (MALDI-MS/MS) sequencing following trypsin digestion of the peptide mixture after global reduction/alkylation. The determination of partial peptide sequences and comparison with the predicted sequences resulted in the identification of four of the five predicted conotoxins. The characterization of posttranslationally modified analogs, which are hydroxylated at proline or amidated at the C-terminus is also demonstrated. Crude venom analysis should prove powerful in studying both inter- and intra-species variation in peptide libraries.  相似文献   
47.
48.
49.
A Survey of Energy Efficient Network Protocols for Wireless Networks   总被引:30,自引:0,他引:30  
Wireless networking has witnessed an explosion of interest from consumers in recent years for its applications in mobile and personal communications. As wireless networks become an integral component of the modern communication infrastructure, energy efficiency will be an important design consideration due to the limited battery life of mobile terminals. Power conservation techniques are commonly used in the hardware design of such systems. Since the network interface is a significant consumer of power, considerable research has been devoted to low-power design of the entire network protocol stack of wireless networks in an effort to enhance energy efficiency. This paper presents a comprehensive summary of recent work addressing energy efficient and low-power design within all layers of the wireless network protocol stack.  相似文献   
50.
Most research in timing verification has implicitly assumed a single vector floating mode computation of delay which is an approximation of the multivector transition delay. In this paper we examine the transition delay of a circuit and demonstrate that the transition delay of a circuit can differ from the floating delay of a circuit. We then provide a procedure for directly calculating the transition delay of a circuit. The most practical benefit of this procedure is the fact that it not only results in a delay calculation but outputs a vector sequence that may be timing simulated to certify static timing verification  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号