首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   371篇
  免费   12篇
  国内免费   2篇
化学   277篇
力学   7篇
数学   16篇
物理学   49篇
无线电   36篇
  2023年   4篇
  2022年   4篇
  2021年   6篇
  2020年   9篇
  2019年   6篇
  2018年   5篇
  2017年   6篇
  2016年   14篇
  2015年   6篇
  2014年   12篇
  2013年   29篇
  2012年   26篇
  2011年   31篇
  2010年   14篇
  2009年   15篇
  2008年   18篇
  2007年   26篇
  2006年   28篇
  2005年   21篇
  2004年   13篇
  2003年   14篇
  2002年   10篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1994年   6篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1985年   4篇
  1984年   4篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1965年   1篇
  1963年   1篇
  1962年   2篇
  1961年   2篇
  1960年   2篇
排序方式: 共有385条查询结果,搜索用时 15 毫秒
71.
Methylation is an essential metabolic process in the biological systems, and it is significant for several biological reactions in living organisms. Methylated compounds are known to be involved in most of the bodily functions, and some of them serve as biomarkers. Theoretically, all α‐amino acids can be methylated, and it is possible to encounter them in most animal/plant samples. But the analytical data, especially the mass spectral data, are available only for a few of the methylated amino acids. Thus, it is essential to generate mass spectral data and to develop mass spectrometry methods for the identification of all possible methylated amino acids for future metabolomic studies. In this study, all N‐methyl and N,N‐dimethyl amino acids were synthesized by the methylation of α‐amino acids and characterized by a GC‐MS method. The methylated amino acids were derivatized with ethyl chloroformate and analyzed by GC‐MS under EI and methane/CI conditions. The EI mass spectra of ethyl chloroformate derivatives of N‐methyl ( 1–18 ) and N,N‐dimethyl amino acids ( 19–35 ) showed abundant [M‐COOC2H5]+ ions. The fragment ions due to loss of C2H4, CO2, (CO2 + C2H4) from [M‐COOC2H5]+ were of structure indicative for 1–18 . The EI spectra of 19–35 showed less number of fragment ions when compared with those of 1–18 . The side chain group (R) caused specific fragment ions characteristic to its structure. The methane/CI spectra of the studied compounds showed [M + H]+ ions to substantiate their molecular weights. The detected EI fragment ions were characteristic of the structure that made easy identification of the studied compounds, including isomeric/isobaric compounds. Fragmentation patterns of the studied compounds ( 1–35 ) were confirmed by high‐resolution mass spectra data and further substantiated by the data obtained from 13C2‐labeled glycines and N‐ethoxycarbonyl methoxy esters. The method was applied to human plasma samples for the identification of amino acids and methylated amino acids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
72.
In this molecular docking study, the protonation states of the catalytic Asp dyad of the beta-secretase (BACE1) enzyme in the presence of eight chemically diverse inhibitors have been predicted. BACE1 catalyzes the rate-determining step in the generation of Alzheimer amyloid beta peptides and is widely considered as a promising therapeutic target. All the inhibitors were redocked into their corresponding X-ray structures using a combination of eight different protonation states of the Asp dyad for each inhibitor. Five inhibitors were primarily found to favor two different monoprotonated states, and the remaining three favor a dideprotonated state. In addition, five of them exhibited secondary preference for a diprotonated state. These results show that the knowledge of a single protonation state of the Asp dyad is not sufficient to search for the novel inhibitors of BACE1 and the most plausible state for each inhibitor must be determined prior to conducting in-silico screening.  相似文献   
73.
74.
Betaines belong to the naturally occurring osmoprotectants or compatible solutes present in a variety of plants, animals and microorganisms. In recent years, metabolomic techniques have been emerging as a fundamental tool for biologists because the constellation of these molecules and their relative proportions provide with information about the actual biochemical condition of a biological system. Therefore, identification and characterization of biologically important betaines are crucial, especially for metabolomic studies. Most of the natural betaines are derived from amino acids and related homologues. Although, theoretically, all the amino acids can be converted to corresponding betaines by simple methylation of the amine group, only a few of the amino acid‐derived betaines were fully characterized in the literature. Here, we report a combined electrospray ionization tandem and high‐resolution mass spectrometry study of all the betaines derived from amino acids, including the isomeric betaines. The decomposition pathway of protonated, sodiated and potassiated molecule ions that enable unambiguous characterization of the betaines including the isomeric betaines and overlapping ionic species of different betaines is distinctive. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
75.
The genus Cajanus (Family: Fabaceae) consists of approximately 37 species, and Cajanus cajan (C. cajan) is a significant member of the genus. It is a commercial legume crop widely grown in sub-tropical and semi-arid tropical areas of the world. C. cajan is well known for its folk medicinal uses to treat various disorders, such as toothache, dizziness, diabetes, stomachache, female ailments and chronic infections. These properties have been linked to the presence of several value-added nutritional and bioactive components. Different solvent extracts from C. cajan (leaves, root, stem and seeds) have been evaluated for their phytochemical and biological activities, namely antioxidant, antimicrobial, antidiabetic, neuroprotective, and anti-inflammatory effects. Taken together, and considering the prominent nutraceutical and therapeutic properties of C. cajan, this review article focuses on the important details including ethnomedicinal uses, chemical composition, biological applications and some other medicinal aspects related to C. cajan nutraceutical and pharmacological applications.  相似文献   
76.
77.
An all-inclusive investigation of the ultrafast excited state relaxation dynamics of a triphenylmethane derivative molecule, New Fuchsine (NF), using a combined approach of density functional theory (DFT), femtosecond transient absorption spectroscopy (fs-TAS), and photoluminescence spectroscopy is presented in this work. The DFT calculations confirmed the formation of twisted molecular structure in the excited state of NF in ethanol solution with bond rotation of ≈86°. TAS measurements of NF solution exhibited ultrafast ground state-recovery pathway via a conical intersection confirming an ultrafast structural reorientation. On the contrary, TAS measurements of NF thin-film exhibited a longer excited-state lifetime suggesting a hindered molecular twisted state formed as an intermediate step. Photophysical kinetic models are proposed to globally fit the fs-TAS data establishing the twisted intramolecular charge transfer (TICT) state mediated ground state recovery for NF in solution and thin film, respectively. Temperature-dependent photoluminescence study of NF film provided a clear insight into the effect of rotational motion of phenyl rings in NF molecules over the TICT mediated emission.  相似文献   
78.
The charge density mismatch concept was applied to the synthesis of high‐charge‐density silicoaluminophosphate SAPO‐69 (OFF) and SAPO‐79 (ERI) and zincoaluminophosphate PST‐16 (CGS), PST‐17 (BPH), PST‐19 (SBS), and ZnAPO‐88 (MER) molecular sieves. Combined alkali‐organoammonium structure direction in these systems is thus enabled. Structure direction is treated from the perspective of stabilizing an ionic framework, the relationships between reaction charge density (OH?/H3PO4), alkali and organoammonium content, and ionicity of tetrahedral framework atoms in successful structure direction are presented.  相似文献   
79.
We consider the problem of computing the minimum ofnvalues, and several well-known generalizations [prefix minima, range minima, and all nearest smaller values (ANSV)] for input elements drawn from the integer domain [1···s], wheresn. In this article we give simple and efficient algorithms for all of the preceding problems. These algorithms all takeO(log log log s) time using an optimal number of processors andO(nsε) space (for constant ε < 1) on the COMMON CRCW PRAM. The best known upper bounds for the range minima and ANSV problems were previouslyO(log log n) (using algorithms for unbounded domains). For the prefix minima and for the minimum problems, the improvement is with regard to the model of computation. We also prove a lower bound of Ω(log log n) for domain sizes = 2Ω(log n log log n). Since, forsat the lower end of this range, log log n = Ω(log log log s), this demonstrates that any algorithm running ino(log log log s) time must restrict the range ofson which it works.  相似文献   
80.
We give a Darboux transformation for the Bogoyavlensky–Konoplechenko equation, which is a two-dimensional generalisation of the Korteweg–deVries equation. This transformation is used to construct a family of solutions of this equation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号