首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89564篇
  免费   3442篇
  国内免费   33篇
化学   53426篇
晶体学   420篇
力学   2211篇
综合类   1篇
数学   15140篇
物理学   18604篇
无线电   3237篇
  2023年   707篇
  2022年   564篇
  2021年   995篇
  2020年   1236篇
  2019年   1132篇
  2018年   1876篇
  2017年   1596篇
  2016年   3021篇
  2015年   2568篇
  2014年   2592篇
  2013年   5631篇
  2012年   5844篇
  2011年   5718篇
  2010年   3616篇
  2009年   3043篇
  2008年   4996篇
  2007年   4833篇
  2006年   4265篇
  2005年   4138篇
  2004年   3610篇
  2003年   2929篇
  2002年   2588篇
  2001年   1740篇
  2000年   1610篇
  1999年   1136篇
  1998年   887篇
  1997年   769篇
  1996年   990篇
  1995年   690篇
  1994年   803篇
  1993年   766篇
  1992年   804篇
  1991年   691篇
  1990年   714篇
  1989年   632篇
  1988年   593篇
  1987年   567篇
  1986年   533篇
  1985年   793篇
  1984年   734篇
  1983年   545篇
  1982年   642篇
  1981年   636篇
  1980年   537篇
  1979年   523篇
  1978年   518篇
  1977年   461篇
  1976年   530篇
  1974年   494篇
  1973年   486篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
This article describes the investigation of the importance of various reaction conditions on microsyneretic pore formation during polymerization of divinylbenzene (DVB) under so‐called “solvothermal” conditions. To induce microsyneretic pore formation, the most important parameter is an unusually high dilution of monomers with a “good” porogen solvating the polymer chains. High dilution and solvation of the growing poly(DVB) chains promote the prolongation of the polymer chains rather than their interconnection by crosslinking. Consequently, when the polymer gel density reaches the point where syneresis starts, the polymer network is geometrically too extensive to be broken up into precipitating entities and, instead, porogen droplets are formed within the continuous polymer gel. The pore geometry created by microsyneresis offers high surface area in wide mesopores and hence, high capacity for supporting functional groups or reactions with much better accessibility than narrow pores between polymer microspheres produced by macrosyneresis in conventional styrenic polymer supports. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 774–781  相似文献   
62.
63.
64.
Krabbe disease is a devastating neurodegenerative disorder characterized by rapid demyelination of nerve fibers. This disease is caused by defects in the lysosomal enzyme β-galactocerebrosidase (GALC), which hydrolyzes the terminal galactose from glycosphingolipids. These lipids are essential components of eukaryotic cell membranes: substrates of GALC include galactocerebroside, the primary lipid component of myelin, and psychosine, a cytotoxic metabolite. Mutations of GALC that cause misfolding of the protein may be responsive to pharmacological chaperone therapy (PCT), whereby small molecules are used to stabilize these mutant proteins, thus correcting trafficking defects and increasing residual catabolic activity in cells. Here we describe a new approach for the synthesis of galacto-configured azasugars and the characterization of their interaction with GALC using biophysical, biochemical and crystallographic methods. We identify that the global stabilization of GALC conferred by azasugar derivatives, measured by fluorescence-based thermal shift assays, is directly related to their binding affinity, measured by enzyme inhibition. X-ray crystal structures of these molecules bound in the GALC active site reveal which residues participate in stabilizing interactions, show how potency is achieved and illustrate the penalties of aza/iminosugar ring distortion. The structure–activity relationships described here identify the key physical properties required of pharmacological chaperones for Krabbe disease and highlight the potential of azasugars as stabilizing agents for future enzyme replacement therapies. This work lays the foundation for new drug-based treatments of Krabbe disease.  相似文献   
65.
The gas‐phase ozonolysis of three methylated alkenes, i.e., trans‐2,2‐dimethyl‐3‐hexene (22dM3H), trans‐2,5‐dimethyl‐3‐hexene (25dM3H), and 4‐methyl‐1‐pentene (4M1P), has been investigated in the presence of sufficient hydroxyl radical scavenger in a laminar flow reactor at ambient temperature (296 ± 2 K) and P = 1 atm of dry air (RH ≤ 5%). Ozone levels in the reactor were monitored by an automatic analyzer. Alkene and gas‐phase product concentrations were determined via online sampling either on three‐bed adsorbent cartridges followed by thermodesorption and GC/FID‐MS analysis or on 2,4‐dinitrophenylhydrazine (DNPH) cartridges for subsequent HPLC/UV analysis. Reaction rate coefficients of (3.38 ± 0.12) × 10?17 for 22dM3H and (2.71 ± 0.26) × 10?17 for 25dM3H, both in cm3 molecule?1 s?1 units, have been obtained under pseudo–first‐order conditions. Primary carbonyl products have been identified for the three investigated alkenes, and branching ratios are reported. In the case of 4M1P ozonolysis, the yield of a Criegee intermediate was indirectly determined. Kinetics and product study results are compared to those of literature when available. This work represents the first investigation of reaction products in the ozonolysis of 22dM3H, 25dM3H, and 4M1P in a flow reactor.  相似文献   
66.
The development of a new three-component chromatography-free reaction of isocyanides, amines and elemental sulfur allowed us the straightforward synthesis of thioureas in water. Considering a large pool of organic and inorganic bases, we first optimized the preparation of aqueous polysulfide solution from elemental sulfur. Using polysulfide solution, we were able to omit the otherwise mandatory chromatography, and to isolate the crystalline products directly from the reaction mixture by a simple filtration, retaining the sulfur in the solution phase. A wide range of thioureas synthesized in this way confirmed the reasonable substrate and functional group tolerance of our protocol.  相似文献   
67.
68.
Autologous bone grafts, used mainly in extensive bone loss, are considered the gold standard treatment in regenerative medicine, but still have limitations mainly in relation to the amount of bone available, donor area, morbidity and creation of additional surgical area. This fact encourages tissue engineering in relation to the need to develop new biomaterials, from sources other than the individual himself. Therefore, the present study aimed to investigate the effects of an elastin and collagen matrix on the bone repair process in critical size defects in rat calvaria. The animals (Wistar rats, n = 30) were submitted to a surgical procedure to create the bone defect and were divided into three groups: Control Group (CG, n = 10), defects filled with blood clot; E24/37 Group (E24/37, n = 10), defects filled with bovine elastin matrix hydrolyzed for 24 h at 37 °C and C24/25 Group (C24/25, n = 10), defects filled with porcine collagen matrix hydrolyzed for 24 h at 25 °C. Macroscopic and radiographic analyses demonstrated the absence of inflammatory signs and infection. Microtomographical 2D and 3D images showed centripetal bone growth and restricted margins of the bone defect. Histologically, the images confirmed the pattern of bone deposition at the margins of the remaining bone and without complete closure by bone tissue. In the morphometric analysis, the groups E24/37 and C24/25 (13.68 ± 1.44; 53.20 ± 4.47, respectively) showed statistically significant differences in relation to the CG (5.86 ± 2.87). It was concluded that the matrices used as scaffolds are biocompatible and increase the formation of new bone in a critical size defect, with greater formation in the polymer derived from the intestinal serous layer of porcine origin (C24/25).  相似文献   
69.
70.
Naphthalimide‐phthalimide derivatives (NDPDs) have been synthesized and combined with an iodonium salt, N‐vinylcarbazole, amine or 2,4,6‐tris(trichloromethyl)‐1,3,5‐triazine to produce reactive species (i.e., radicals and cations). These generated reactive species are capable of initiating the cationic polymerization of epoxides and/or the radical polymerization of acrylates upon exposure to very soft polychromatic visible lights or blue lights. Compared with the well‐known camphorquinone based systems used as references, the novel NDPD based combinations employed here demonstrate clearly higher efficiencies for the cationic polymerization of epoxides under air as well as the radical polymerization of acrylates. Remarkably, one of the NDPDs (i.e., NDPD2) based systems is characterized by an outstanding reactivity. The structure/reactivity/efficiency relationships of the investigated NDPDs were studied by fluorescence, cyclic voltammetry, laser flash photolysis, electron spin resonance spin trapping, and steady state photolysis techniques. The key parameters for their reactivity are provided. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 665–674  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号