首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39792篇
  免费   6372篇
  国内免费   4397篇
化学   21963篇
晶体学   349篇
力学   1801篇
综合类   136篇
数学   2983篇
物理学   12631篇
无线电   10698篇
  2024年   189篇
  2023年   1064篇
  2022年   1354篇
  2021年   1819篇
  2020年   1714篇
  2019年   1653篇
  2018年   1382篇
  2017年   1273篇
  2016年   1884篇
  2015年   1928篇
  2014年   2422篇
  2013年   2920篇
  2012年   3469篇
  2011年   3474篇
  2010年   2333篇
  2009年   2323篇
  2008年   2635篇
  2007年   2190篇
  2006年   2134篇
  2005年   1741篇
  2004年   1232篇
  2003年   1030篇
  2002年   1008篇
  2001年   837篇
  2000年   660篇
  1999年   822篇
  1998年   717篇
  1997年   668篇
  1996年   682篇
  1995年   566篇
  1994年   471篇
  1993年   367篇
  1992年   362篇
  1991年   274篇
  1990年   237篇
  1989年   176篇
  1988年   107篇
  1987年   85篇
  1986年   110篇
  1985年   76篇
  1984年   44篇
  1983年   49篇
  1982年   33篇
  1981年   25篇
  1980年   8篇
  1979年   7篇
  1976年   1篇
  1975年   1篇
  1957年   4篇
  1923年   1篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
991.
A tetraphenylethene (TPE) derivative substituted with a sulfonyl‐based naphthalimide unit ( TPE‐Np ) was designed and synthesized. Its optical properties in solution and in the solid state were investigated. Photophysical properties indicated that the target molecule, TPE‐Np , possessed aggregation‐induced emission (AIE) behavior, although the linkage between TPE and the naphthalimide unit was nonconjugated. Additionally, it exhibited an unexpected, highly reversible mechanochromism in the solid state, which was attributed to the change in manner of aggregation between crystalline and amorphous states. On the other hand, a solution of TPE‐Np in a mixture of dimethyl sulfoxide/phosphate‐buffered saline was capable of efficiently distinguishing glutathione (GSH) from cysteine and homocysteine in the presence of cetyltrimethylammonium bromide. Furthermore, the strategy of using poly(ethylene glycol)–polyethylenimine (PEG‐PEI) nanogel as a carrier to cross‐link TPE‐Np to obtain a water‐soluble PEG‐PEI/ TPE‐Np nanoprobe greatly improved the biocompatibility, and this nanoprobe could be successfully applied in the visualization of GSH levels in living cells.  相似文献   
992.
Rubidium lead halides (RbPbX3), an important class of all‐inorganic metal halide perovskites, are attracting increasing attention for photovoltaic applications. However, limited by its lower Goldschmidt tolerance factor t≈0.78, all‐inorganic RbPbBr3 has not been reported. Now, the crystal structure, X‐ray diffraction (XRD) pattern, and band structure of perovskite‐phase RbPbBr3 has now been investigated. Perovskite‐phase RbPbBr3 is unstable at room temperature and transforms to photoluminescence (PL)‐inactive non‐perovskite. The structural evolution and mechanism of the perovskite–non‐perovskite phase transition were clarified in RbPbBr3. Experimentally, perovskite‐phase RbPbBr3 was realized through a dual‐source chemical vapor deposition and annealing process. These perovskite‐phase microspheres showed strong PL emission at about 464 nm. This new perovskite can serve as a gain medium and microcavity to achieve broadband (475–540 nm) single‐mode lasing with a high Q of about 2100.  相似文献   
993.
The all‐inorganic CsPbBr3 perovskite solar cell (PSC) is a promising solution to balance the high efficiency and poor stability of state‐of‐the‐art organic–inorganic PSCs. Setting inorganic hole‐transporting layers at the perovskite/electrode interface decreases charge carrier recombination without sacrificing superiority in air. Now, M‐substituted, p‐type inorganic Cu(Cr,M)O2 (M=Ba2+, Ca2+, or Ni2+) nanocrystals with enhanced hole‐transporting characteristics by increasing interstitial oxygen effectively extract holes from perovskite. The all‐inorganic CsPbBr3 PSC with a device structure of FTO/c‐TiO2/m‐TiO2/CsPbBr3/Cu(Cr,M)O2/carbon achieves an efficiency up to 10.18 % and it increases to 10.79 % by doping Sm3+ ions into perovskite halide, which is much higher than 7.39 % for the hole‐free device. The unencapsulated Cu(Cr,Ba)O2‐based PSC presents a remarkable stability in air in either 80 % humidity over 60 days or 80 °C conditions over 40 days or light illumination for 7 days.  相似文献   
994.
Commercial bioethanol can be readily converted into ethylene by a dehydration process using solid acids, such as Brønsted acidic H‐ZSM‐5 zeolites, and thus, it is an ideal candidate to replace petroleum and coal for the sustainable production of ethylene. Now, strong Lewis acidic extra‐framework three‐coordinate Al3+ species were introduced into H‐ZSM‐5 zeolites to improve their catalytic activity. Remarkably, Al3+ species working with Brønsted acid sites can accelerate ethanol dehydration at a much lower reaction temperature and shorten the unsteady‐state period within 1–2 h, compared to >9 h for those without Al3+ species, which can significantly enhance the ethanol dehydration efficiency and reduce the cost. The reaction mechanism, studied by solid‐state NMR, shows that strong Lewis acidic EFAl‐Al3+ species can collaborate with Brønsted acid sites and promote ethanol dehydration either directly or indirectly via an aromatics‐based cycle to produce ethylene.  相似文献   
995.
996.
997.
998.
A number of recently discovered nucleophilic boron compounds, such as boryl anions and borylenes, are breaking the rules regarding boron and boron‐containing compounds and their reputation as Lewis acids/electrophiles. In a similar fashion, the B?H bonding pair electrons in boranes also show nucleophilicity which is ascribed to the lower electronegativity of boron relative to that of hydrogen. However, this nucleophilicity of the B?H bond has received far less attention. Explorations of the nucleophilicity of the B?H bonding pair electrons have led to the formation of B?H?B bonded units and B?H???H?Y dihydrogen bonds, based on which new chemistry has been uncovered, including the elucidation of the mechanism of formation of aminodiborane (ADB), the diammoniate of diborane (DADB), and lithium or sodium salts of octahydrotriborates (B3H8?), as well as the development of more convenient and straightforward synthetic routes to these reagents. Moreover, the recognition of the nucleophilic properties of the B?H bonding pair electrons will also help to more deeply understand the different mechanisms operating in hydroboration reactions.  相似文献   
999.
Soft materials possess several distinctive characteristics, such as controllable deformation, infinite degrees of freedom, and self‐assembly, which make them promising candidates for building soft machines, robots, and haptic interfaces. In this Review, we give an overview of recent advances in these areas, with an emphasis on two specific topics: bio‐inspired design and additive manufacturing. Biology is an abundant source of inspiration for functional materials and systems that mimic the function or mechanism of biological tissues, agents, and behaviors. Additive manufacturing has enabled the fabrication of materials and structures prevalent in biology, thereby leading to more‐capable soft robots and machines. We believe that bio‐inspired design and additive manufacturing have been, and will continue to be, important tools for the design of soft robots.  相似文献   
1000.
Eutectic molecular liquids (EMLs) based on hydrogen‐bonding interaction and π–π stacking were prepared. We found that the thermodynamic properties like initial decomposition temperature and glass transition temperature of EMLs are mainly dominated by the hydrogen bond donor, which is beneficial for designing and preparing new EMLs. These new liquid systems could be applied in the field of environmental and material science.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号