首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   607篇
  免费   25篇
  国内免费   1篇
化学   361篇
晶体学   1篇
力学   6篇
数学   64篇
物理学   108篇
无线电   93篇
  2023年   6篇
  2022年   5篇
  2021年   17篇
  2020年   14篇
  2019年   16篇
  2018年   9篇
  2017年   6篇
  2016年   17篇
  2015年   15篇
  2014年   23篇
  2013年   29篇
  2012年   32篇
  2011年   50篇
  2010年   44篇
  2009年   30篇
  2008年   51篇
  2007年   60篇
  2006年   36篇
  2005年   44篇
  2004年   21篇
  2003年   17篇
  2002年   24篇
  2001年   10篇
  2000年   10篇
  1999年   4篇
  1998年   5篇
  1997年   7篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   4篇
  1982年   4篇
  1979年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有633条查询结果,搜索用时 312 毫秒
31.
A series of well-defined poly{dl -lactide-b-[oligo(ethylene glycol) methyl ether (meth)acrylate)]} (PDLLA-b-POEG[M]A) functional amphiphilic diblock copolymers was synthesized by employing a multistep procedure involving: (a) ring-opening polymerization of dl -lactide using n-decanol and stannous octoate as the initiating system, (b) esterification reaction of the PDLLA hydroxyl end groups with 2-bromoisobutyryl bromide, (c) atom transfer radical polymerization of OEG(M)A with the newly created bromoisobutyryl initiating site, and (d) incorporation of biotin or folic acid at the POEGA chain ends using click chemistry. The products were characterized by NMR spectroscopy and SEC analysis. The aggregation behavior of the synthesized block copolymers was investigated by dynamic light scattering at 25°C in aqueous solutions. The hydrophobic model compounds Nile red and pyrene were efficiently incorporated into the copolymer aggregates in aqueous solutions. High partition coefficient values were determined by fluorescence spectroscopy.  相似文献   
32.
The synthesis and molecular characterization of a series of conformationally asymmetric polystyrene‐block‐poly(1,3‐cyclohexadiene) (PS‐b‐PCHD) diblock copolymers (PCHD: ~90% 1,4 and ~10% 1,2), by sequential anionic copolymerization high vacuum techniques, is reported. A wide range of volume fractions (0.27 ≤ ?PS ≤ 0.91) was studied by transmission electron microscopy and small‐angle X‐ray scattering in order to explore in detail the microphase separation behavior of these flexible/semiflexible diblock copolymers. Unusual morphologies, consisting of PCHD core(PCHD‐1,4)–shell(PCHD‐1,2) cylinders in PS matrix and three‐phase (PS, PCHD‐1,4, PCHD‐1,2) four‐layer lamellae, were observed suggesting that the chain stiffness of the PCHD block and the strong dependence of the interaction parameter χ on the PCHD microstructures are important factors for the formation of this unusual microphase separation behavior in PS‐b‐PCHD diblock copolymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1564–1572  相似文献   
33.
Electrolyte additives have been widely used to address critical issues in current metal (ion) battery technologies. While their functions as solid electrolyte interface forming agents are reasonably well-understood, their interactions in the liquid electrolyte environment remain rather elusive. This lack of knowledge represents a significant bottleneck that hinders the development of improved electrolyte systems. Here, the key role of additives in promoting cation (e.g., Li+) desolvation is unraveled. In particular, nitrate anions (NO3) are found to incorporate into the solvation shells, change the local environment of cations (e.g., Li+) as well as their coordination in the electrolytes. The combination of these effects leads to effective Li+ desolvation and enhanced battery performance. Remarkably, the inexpensive NaNO3 can successfully substitute the widely used LiNO3 offering superior long-term stability of Li+ (de-)intercalation at the graphite anode and suppressed polysulfide shuttle effect at the sulfur cathode, while enhancing the performance of lithium–sulfur full batteries (initial capacity of 1153 mAh g−1 at 0.25C) with Coulombic efficiency of ≈100% over 300 cycles. This work provides important new insights into the unexplored effects of additives and paves the way to developing improved electrolytes for electrochemical energy storage applications.  相似文献   
34.
In this study, we report on a novel hybrid structure for the direct sensing of metal ions based on the use of CdSe quantum dots functionalized with tetrapyridyl-substituted porphyrin, a cation-selective carrier. It is shown that the porphyrin ion carrier coordinates to Cd atoms of the CdSe quantum dots through the Lewis basic pyridyl groups. The porphyrin-quantum dot ligation allows for the direct communication between the porphyrin and the underlying CdSe quantum structure. The quantum yield of CdSe is maintained despite the robust capping generated when the unmetallated porphyrins coordinate onto the quantum dots. Upon coordination with zinc ions, this porphyrin capping is shown to strongly contribute to the increase in the fluorescence efficiency of CdSe, via an activating interaction with the quantum dots surface. The results provide the grounds for the development of highly sensitive and selective nano-optode sensing systems.  相似文献   
35.
A series of low molecular weight lanthanide complexes were developed that have high 1H longitudinal relaxivities (r1) and the potential to be used as dual frequency 1H and 19F MR probes. Their behavior was investigated in more detail through relaxometry, pH‐potentiometry, luminescence, and multinuclear NMR spectroscopy. Fitting of the 1H NMRD and 17O NMR profiles demonstrated a very short water residence lifetime (<10 ns) and an appreciable second sphere effect. At lower field strengths (20 MHz), two of the complexes displayed a peak in r1 (21.7 and 16.3 mM ?1 s?1) caused by an agglomeration, that can be disrupted through the addition of phosphate anions. NMR spectroscopy revealed that at least two species are present in solution interconverting through an intramolecular binding process. Two complexes provided a suitable signal in 19F NMR spectroscopy and through the selection of optimized imaging parameters, phantom images were obtained in a MRI scanner at concentrations as low as 1 mM . The developed probes could be visualized through both 1H and 19F MRI, showing their capability to function as dual frequency MRI contrast agents.  相似文献   
36.
The present article demonstrates a simple, eco-friendly route for the fabrication of carbon nanotubes (CNTs) with different morphologies, including the fascinating bamboo-like structures without complex catalyst/support preparation procedures. A thermal chemical vapor deposition (CVD) technique that utilized natural pozzolan supports and a solid carbon source, that is, a mixture of camphor and ferrocene in a weight ratio of 20:1, was carried out at different temperatures where the ferrocene played also the role of catalyst. The pozzolan chemical composition and mineral identification were determined by energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. The morphology of the fabricated CNTs was studied via scanning and transmission electron microscopies (SEM and TEM). It was revealed that both conventional tubular and bamboo-like nanotubes grow at 750 °C while the bamboo-like morphology prevails at 850 °C. The better nanostructure uniformity at higher deposition temperature was accompanied by an improved nanotube graphitization degree that was verified by Raman spectroscopy. Yet, the reduction of the CNTs production yield was recorded by thermogravimetric analysis (TGA). The experimental data are interpreted and discussed as an interplay between the CNTs processing temperature, morphology and growth mechanism. Thus, the growth of either tubular or bamboo-like nanostructures is suggested to be ruled by the competitive surface and bulk diffusions of carbon onto and into the catalyst surface. The growth depends on the size of catalyst nanoparticles sintered at different temperatures. The favorable role of the pozzolan supporting materials in the formation of bamboo-like tubes is emphasized.  相似文献   
37.
A novel synthetic strategy gives reversible cross‐linked polymeric materials with tunable fluorescence properties. Dimaleimide‐substituted tetraphenylethene (TPE‐2MI), which is non‐emissive owing to the photo‐induced electron transfer (PET) between maleimide (MI) and tetraphenylethene (TPE) groups, was used to cross‐link random copolymers of methyl (MM), decyl (DM) or lauryl (LM) methacrylate with furfuryl methacrylate (FM). The mixture of copolymer and TPE‐2MI in DMF showed reversible fluorescence with “on/off” behavior depending on the Diels–Alder (DA)/retro‐DA process, which is easily adjusted by temperature. At high temperatures, the retro‐DA reaction is dominant, and the fluorescence is quenched by the photo‐induced electron transfer (PET) mechanism. In contrast, at low temperatures, the emission recovers as the DA reaction takes over. A transparent PMFM/TPE‐2MI polymer film was prepared which shows an accurate response to the external temperature and exhibited tunable fluorescent “turn on/off” behavior. These results suggest the possible application in areas including information security and transmission. An example of invisible/visible writing is given.  相似文献   
38.
Electrical microstimulation via intracortical electrodes is a widely used method for deducing functions of the brain. In this study, we compared the spatial extent and amplitude of BOLD responses evoked by intracortical electrical stimulation in primary visual cortex with BOLD activations evoked by visual stimulation. The experiments were performed in anesthetized rhesus monkeys. Visual stimulation yielded activities larger than predicted from the well-established visual magnification factor. However, electrical microstimulation yielded an even greater spread of the BOLD response. Our results confirm that the effects of electrical microstimulation extend beyond the brain region expected to be excited by direct current spread.  相似文献   
39.
Two new artificial mimics of the photosynthetic antenna‐reaction center complex have been designed and synthesized (BDP‐H2P‐C60 and BDP‐ZnP‐C60). The resulting electron‐donor/acceptor conjugates contain a porphyrin (either in its free‐base form (H2P) or as Zn‐metalated complex (ZnP)), a boron dipyrrin (BDP), and a fulleropyrrolidine possessing, as substituent of the pyrrolidine nitrogen, an ethylene glycol chain terminating in an amino group C60‐X‐NH2 (X=spacer). In both cases, the three different components were connected by s‐triazine through stepwise substitution reactions of cyanuric chloride. In addition to the facile synthesis, the star‐type arrangement of the three photo‐ and redox‐active components around the central s‐triazine unit permits direct interaction between one another, in contrast to reported examples in which the three components are arranged in a linear fashion. The energy‐ and electron‐transfer properties of the resulting electron‐donor/acceptor conjugates were investigated by using UV/Vis absorption and emission spectroscopy, cyclic voltammetry, and femtosecond transient absorption spectroscopy. Comparison of the absorption spectra and cyclic voltammograms of BDP‐H2P‐C60 and BDP‐ZnP‐C60 with those of BDP‐H2P, BDP‐ZnP and BDP‐C60, which were used as references, showed that the spectroscopic and electrochemical properties of the individual constituents are basically retained, although some appreciable shifts in terms of absorption indicate some interactions in the ground state. Fluorescence lifetime measurements and transient absorption experiments helped to elucidate the antenna function of BDP, which upon selective excitation undergoes a rapid and efficient energy transfer from BDP to H2P or ZnP. This is then followed by an electron transfer to C60, yielding the formation of the singlet charge‐separated states, namely BDP‐H2P .+‐ C60 .? and BDP‐ZnP .+‐ C60 . ?. As such, the sequence of energy transfer and electron transfer in the present models mimics the events of natural photosynthesis.  相似文献   
40.
Hydrogen abstractions are important elementary reactions in a variety of reacting media at high temperatures in which oxygenates and hydrocarbon radicals are present. Accurate kinetic data are obtained from CBS‐QB3 ab initio (AI) calculations by using conventional transition‐state theory within the high‐pressure limit, including corrections for hindered rotation and tunneling. From the obtained results, a group‐additive (GA) model is developed that allows the Arrhenius parameters and rate coefficients for abstraction of the α‐hydrogen from a wide range of oxygenate compounds to be predicted at temperatures ranging from 300 to 1500 K. From a training set of 60 hydrogen abstractions from oxygenates by carbon‐centered radicals, 15 GA values (ΔGAVos) are obtained for both the forward and reverse reactions. Among them, four ΔGAVos refer to primary contributions, and the remaining 11 ΔGAVos refer to secondary ones. The accuracy of the model is further improved by introducing seven corrections for cross‐resonance stabilization of the transition state from an additional set of 43 reactions. The determined ΔGAVos are validated upon a test set of AI data for 17 reactions. The mean absolute deviation of the pre‐exponential factors (log A) and activation energies (Ea) for the forward reaction at 300 K are 0.238 log(m3 mol?1 s?1) and 1.5 kJ mol?1, respectively, whereas the mean factor of deviation <ρ> between the GA‐predicted and the AI‐calculated rate coefficients is 1.6. In comparison with a compilation of 33 experimental rate coefficients, the <ρ> between the GA‐predicted values and these experimental values is only 2.2. Hence, the constructed GA model can be reliably used in the prediction of the kinetics of α‐hydrogen‐abstraction reactions between a broad range of oxygenates and oxygenate radicals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号