首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   7篇
  国内免费   2篇
化学   107篇
晶体学   1篇
力学   16篇
数学   10篇
物理学   28篇
无线电   29篇
  2024年   2篇
  2022年   6篇
  2021年   17篇
  2020年   12篇
  2019年   11篇
  2018年   9篇
  2017年   5篇
  2016年   8篇
  2015年   6篇
  2014年   15篇
  2013年   21篇
  2012年   18篇
  2011年   13篇
  2010年   10篇
  2009年   6篇
  2008年   4篇
  2007年   5篇
  2006年   3篇
  2005年   5篇
  2004年   7篇
  2003年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有191条查询结果,搜索用时 109 毫秒
111.
Journal of Thermal Analysis and Calorimetry - Owing to their safety, stability and controllability, diffusion flames have found extensive applications in medicine and power generation. Regarding...  相似文献   
112.
Journal of Thermal Analysis and Calorimetry - In current research, MAPLE software was utilized to scrutinize the heat transfer of copper–H2O nanomaterial migration over a sheet. Entropy...  相似文献   
113.
This review is about the naturally formed and intentionally produced nanofibrils or nanofibers (NFs) that have been extracted and utilized or expected to be used for special applications. The diameter of NFs ranges between a few to a few hundred nanometers. Methods to arrange synthetic NFs assembly in yarns or pads forms have been examined. High throughput productions, versatility of various thermoplastics, and less environmental pollution are the advantages of the methods of extraction, which seems to make it as an economical process. It can also be used for the polymers that are difficult to be converted to NFs by electrospinning. The process is challenging and scientifically fascinating to attract the investigators. There are many more polymers to be considered, and there are many more envisioned applications that have to be practiced in the future. A theoretical base is needed for the evaluation of the effects of polymer flow parameters on the extracted NFs properties.  相似文献   
114.
This article experimentally shows that the wetting property of a micropatterned surface is a function of the center-to-center offset distance between successive pillars in a column, referred to here as eccentricity. Studies were conducted on square micropatterns which were fabricated on a silicon wafer with pillar eccentricity ranging from 0 to 6 μm for two different pillar diameters and spacing. Measurement results of the static as well as the dynamic contact angles on these surfaces revealed that the contact angle decreases with increasing eccentricity and increasing relative spacing between the pillars. Furthermore, quantification of the contact angle hysteresis (CAH) shows that, for the case of lower pillar spacing, CAH could increase up to 41%, whereas for the case of higher pillar spacing, this increment was up to 35%, both corresponding to the maximum eccentricity of 6 μm. In general, the maximum obtainable hydrophobicity corresponds to micropillars with zero eccentricity. As the pillar relative spacing decreases, the effect of eccentricity on hydrophobicity becomes more pronounced. The dependence of the wettability conditions of the micropatterned surface on the pillar eccentricity is attributed to the contact line deformation resulting from the changed orientation of the pillars. This finding provides additional insights in design and fabrication of efficient micropatterned surfaces with controlled wetting properties.  相似文献   
115.
This paper presents an energy‐efficient and coverage‐preserving communication protocol which distributes a uniform energy load to the sensors in a wireless microsensor network. This protocol, called Distance‐based Segmentation (DBS), is a cluster‐based protocol that divides the entire network into equal‐area segments and applies different clustering policies to each segment to (1) reduce total energy dissipation and (2) balance the energy load among the sensors. Therefore, it prolongs the lifetime of the network and improves the sensing coverage. Moreover, the proposed routing protocol does not need any centralized support from a certain node which is at odds with aiming to establish a scalable communication protocol. Results from extensive simulations on two different network configurations show that by lowering the number of wasteful transmissions in the network, the DBS can achieve as much as a 20% reduction in total dissipated energy as compared with current cluster‐based protocols. In addition, this protocol is able to distribute energy load more evenly among the sensors in the network. Hence, it yields up to a 66% increase in the useful network lifetime. According to the simulation results, the sensing coverage degradation of the DBS is considerably slower than that of the other cluster‐based protocols. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
116.
Direct numerical simulation (DNS) has shown that Rayleigh–Bénard convection in a fluid-saturated porous medium self-organizes into narrowly spaced plumes at (ostensibly) asymptotically high values of the Rayleigh number Ra. In this Letter a combination of DNS and upper bound theory is used to investigate the dependence of the Nusselt number Nu on the domain aspect ratio L at large Ra  . A novel algorithm is introduced to solve the optimization problems arising from the upper bound analysis, allowing for the best available bounds to be extended up to Ra≈2.65×104Ra2.65×104. The dependence of the bounds on L(Ra)L(Ra) is explored and a “minimal flow unit” is identified.  相似文献   
117.
A model is developed of aerosol spray for synthesis of sensor film from solution. The synthesis technique considered involves atomization of a solution of mixed salts in methanol, spraying of solution droplets, droplet deposition on a heated substrate, evaporation and chemical reaction to produce mixed oxides, and subsequent film growth. The precise control of oxide nanoparticle size distribution and inter-particle spacing in the film is crucial to achieving high sensitivity. These in turn largely depend on the droplet characteristics prior to impingement on the substrate. This paper focuses on the development of a model to describe the atomization and spray processes prior to the film growth. Specifically, a mathematical model is developed utilizing computational fluid dynamics solution of the equations governing the transport of atomized droplets from the nozzle to the substrate in order to predict droplet characteristics in flight. The predictions include spatial distribution of droplet size and concentration, and the effect on these characteristics of swirling inlet flow at the spray nozzle.  相似文献   
118.
A Ru-catalyzed direct arylation of benzylic sp(3) carbons of acyclic amines with arylboronates is reported. This highly regioselective and efficient transformation can be performed with various combinations of N-(2-pyridyl) substituted benzylamines and arylboronates. Substitution of the pyridine directing group in the 3-position proved to be crucial in order to achieve high arylation yields. Furthermore, the pyridine directing group can be removed in high yields via a two-step protocol.  相似文献   
119.
In this work, the effect of quaternary ammonium salt containing nanoclay content (1–5 wt%) on phase morphology, rheology, cure kinetics, and mechanical properties of the vinyl ester resin (VER)‐based nanocomposites was studied. The morphological characterization including d‐spacing measurement, microscopy observation and phase‐height image processing were performed on the prepared nanocomposites using small angel X‐ray scattering (SAXS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). According to the results obtained from these techniques, it was concluded that an intercalated morphology existed for all the nanocomposites. The kinetic analyses of the isothermal curing followed by storage modulus obtained from the rheometry experiments are shown to be an affective rheological characteristic to investigate the cure behavior of VER/clay nanocomposites. In addition, the most important finding regarding the effect of nanoclay on the cross‐linking behavior of VER systems lays on the chemisorption and physisorption of the reacting monomers and initiator molecules on the nanoclay platelets surface which is found to be responsible for the retardation of the cure reaction caused by organoclay. Eventually, the mechanical characterizations were performed through the tensile, flexural and impact analysis tests. In this case, a considerable improvement of the bulk mechanical responses such as tensile and flexural strengths and also the corresponding moduli were observed for the nanocomposites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号