首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19137篇
  免费   2705篇
  国内免费   1921篇
化学   10725篇
晶体学   179篇
力学   830篇
综合类   67篇
数学   1766篇
物理学   4798篇
无线电   5398篇
  2024年   84篇
  2023年   542篇
  2022年   647篇
  2021年   880篇
  2020年   876篇
  2019年   732篇
  2018年   644篇
  2017年   586篇
  2016年   880篇
  2015年   941篇
  2014年   986篇
  2013年   1398篇
  2012年   1531篇
  2011年   1529篇
  2010年   1065篇
  2009年   1117篇
  2008年   1250篇
  2007年   1070篇
  2006年   1027篇
  2005年   926篇
  2004年   654篇
  2003年   560篇
  2002年   536篇
  2001年   425篇
  2000年   373篇
  1999年   389篇
  1998年   273篇
  1997年   217篇
  1996年   255篇
  1995年   209篇
  1994年   176篇
  1993年   147篇
  1992年   130篇
  1991年   113篇
  1990年   113篇
  1989年   80篇
  1988年   70篇
  1987年   51篇
  1986年   42篇
  1985年   49篇
  1984年   41篇
  1983年   22篇
  1982年   17篇
  1981年   20篇
  1980年   11篇
  1979年   9篇
  1976年   10篇
  1975年   12篇
  1971年   7篇
  1969年   5篇
排序方式: 共有10000条查询结果,搜索用时 14 毫秒
271.
Flexible transparent electrodes are critically important for the emerging flexible and stretchable electronic and optoelectronic devices. To this end, transparent polymer films coated with silver nanowires (AgNWs) have been intensively studied in the past decade. However, it remains a grand challenge to achieve both high conductivity and transmittance in large-area films, mainly due to the poor alignment of AgNWs and their high junction resistance. Here, the successful attempt to realize large-area AgNW patterns on various substrates by a 2D ice-templating approach is reported. With a relatively low dosage of AgNWs (4 µg·cm−2), the resulted flexible electrode simultaneously achieves high optical transmittance (≈91%) and low sheet resistance (20 Ω·sq−1). In addition, the electrode exhibits excellent durability during cyclic bending (≈10 000 times) and stretching (50% strain). The potential applications of the flexible transparent electrode in both touch screen and electronic skin sensor, which can monitor the sliding pressure and direction in real-time, are demonstrated. More importantly, it is believed that the study represents a facile and low-cost approach to assemble various nanomaterials into large-area functional patterns for advanced flexible devices.  相似文献   
272.
Lead-free tin perovskite solar cells (PSCs) have emerged as a promising candidate toward high-performance and eco-friendly photovoltaic technology with great potential for future application. However, tin PSCs with over 10% efficiency usually feature an organic hole transport layer (HTL) at the illumination side that may induce device degradation during long-term operation. Removing the unstable organic HTL is an important way to solve these stability issues, but the efficiency of HTL-free tin PSCs is still much lower than that of the completed cells. Herein, it is demonstrated that formamidinium tin iodide doped with heterogeneous ammonium salts can form an upward band-bending structure to selectively extract the hole in the HTL-free devices. By using this band-bending structure, a promising efficiency of over 10% is first achieved for the lead-free PSCs with a HTL-free structure. More importantly, the optimized cell is highly stable, keeping 95% and 90% of the initial efficiency after continuous light soaking for 40 days and 80 °C annealing for 300 h, respectively. This work paves a route toward the development of efficient, eco-friendly, and highly stable perovskite photovoltaics.  相似文献   
273.
274.
In this paper, the MCI (multipath crossover interconnection) technique for octagon single and symmetrical spiral inductors has been presented to improve the quality factor. The metal wires of the single and symmetrical inductors formed by the top metal are divided into multiple segments according to the depth of the skin effects. The outermost path of the metal is crossover-interconnected to the innermost path by the underlayer metal and via The crossover technique makes the lengths of the total current paths between two ports approximately equal to each other. Therefore, the induced magnetic flux and resistance of each path can be balanced and the Q-factor of spiral inductors can be enhanced. The proposed MCI technique has been validated by the electromagnetic simulation with the 130-nm 1P6M SiGe BiCMOS process. For the devices with occupying areas of 240×240μm2, results of electromagnetic simulation show that about 24% improvement in the Q-peak (3.3 GHz) of the MCI single inductor as compared to conventional single inductors (3.1 GHz), and about 88.1% improvement in the Q-peak (3.2 GHz) of the MCI symmetrical inductor as compared to conventional symmetrical inductors (1.8 GHz).  相似文献   
275.
Traditional aqueous energy storage devices are difficult to operate at low temperatures owing to the poor ionic conductivity and sluggish interfacial dynamics in frozen electrolytes. Herein, the low-cost brine refrigerants for food freezing and preservation as electrolytes, and unexpectedly realize high ionic conductivity and stable operation of an aqueous storage device at low temperatures are demonstrated. A CaCl2 brine refrigerant electrolyte (BRE) with a low freezing point −55 °C and high ionic conductivity (10.1 mS cm−1 at −50 °C) is developed for supercapacitors (SCs), which retains 80% of the room temperature capacity at −50 °C and exhibits ultra-long cycle life with excellent capacity retention of 92% over 98,500 cycles, outperforming the other SCs which can be operated below −40 °C in literature. Moreover, the SCs with MgCl2 and NaCl BREs can also be operated successfully with excellent cycle stability and high-capacity retention at low temperatures of −30 and −20 °C, respectively. Fundamental correlation between various cations and their effect on the freezing point reduction of aqueous electrolytes is revealed via Raman investigation and molecular dynamics simulations. This study provides a rational design strategy for green, inexpensive, and safe low-temperature aqueous electrolytes for energy storage devices.  相似文献   
276.
In cognitive radio networks, an important issue is to share the detected available spectrum among different secondary users to improve the network performance. Although some work has been done for dynamic spectrum access, the learning capability of cognitive radio networks is largely ignored in the previous work. In this paper, we propose a reinforcement-learning-based double auction algorithm aiming to improve the performance of dynamic spectrum access in cognitive radio networks. The dynamic spectrum access process is modeled as a double auction game. Based on the spectrum access history information, both primary users and secondary users can estimate the impact on their future rewards and then adapt their spectrum access or release strategies effectively to compete for channel opportunities. Simulation results show that the proposed reinforcement-learning-based double auction algorithm can significantly improve secondary users’ performance in terms of packet loss, bidding efficiency and transmission rate or opportunity access.  相似文献   
277.
Fenton reaction–based chemodynamic therapy (CDT) has attracted considerable attention for tumor treatment, because the Fenton reaction can degrade endogenous H2O2 within the tumor to form reactive oxygen species (ROS) to kill cancer cells. The kinetics of the Fenton reaction has significantly influenced its treatment efficacy. It is crucial to enhance the reaction kinetics at the maximum H2O2 concentration to quickly produce vast amounts of ROS to achieve treatment efficacy, which to date, has not been realized. Herein, reported is an efficacious CDT treatment of breast cancer using biomimetic CS‐GOD@CM nanocatalysts, which are rationally designed to significantly boost the Fenton reaction through improvement of H2O2 concentration within tumors, and application of the second near‐infrared (NIR‐II) light irradiation at the maximum concentration, which is monitored by photoacoustic imaging. The biomimetic nanocatalysts are composed of ultra‐small Cu2?xSe (CS) nanoparticles, glucose oxidase (GOD), and tumor cell membrane (CM). The nanocatalysts can be retained in tumor for more than two days to oxidize glucose and produce an approximately 2.6‐fold increase in H2O2 to enhance the Fenton reaction under the NIR‐II irradiation. This work demonstrates for the first time the CDT treatment of cancer enhanced by the NIR‐II light.  相似文献   
278.
All‐dielectric metasurfaces have become a new paradigm for flat optics as they allow flexible engineering of the electromagnetic space of propagating waves. Such metasurfaces are usually composed of individual subwavelength elements embedded into a host medium or placed on a substrate, which often diminishes the quality of the resonances. The substrate imposes limitations on the metasurface functionalities, especially for infrared and terahertz frequencies. Here a novel concept of membrane Huygens' metasurfaces is introduced. The metasurfaces feature an inverted design, and they consist of arrays of holes made in a thin membrane of high‐index dielectric material, with the response governed by the electric and magnetic Mie resonances excited within dielectric domains of the membrane. Highly efficient transmission combined with the 2π phase coverage in the freestanding membranes is demonstrated. Several functional metadevices for wavefront control are designed, including beam deflector, a lens, and an axicon. Such membrane metasurfaces provide novel opportunities for efficient large‐area metadevices, whose advanced functionality is defined by structuring rather than by chemical composition.  相似文献   
279.
Microneedle (MN), a miniaturized needle with a length‐scale of hundreds of micrometers, has received a great deal of attention because of its minimally invasive, pain‐free, and easy‐to‐use nature. However, a major challenge for controlled long‐term drug delivery or biosensing using MN is its low tissue adhesion. Although microscopic structures with high tissue adhesion are found from living creatures in nature (e.g., microhooks of parasites, barbed stingers of honeybees, quills of porcupines), creating MNs with such complex microscopic features is still challenging with traditional fabrication methods. Here, a MN with bioinspired backward‐facing curved barbs for enhanced tissue adhesion, manufactured by a digital light processing 3D printing technique, is presented. Backward‐facing barbs on a MN are created by desolvation‐induced deformation utilizing cross‐linking density gradient in a photocurable polymer. Barb thickness and bending curvature are controlled by printing parameters and material composition. It is demonstrated that tissue adhesion of a backward‐facing barbed MN is 18 times stronger than that of barbless MN. Also demonstrated is sustained drug release with barbed MNs in tissue. Improved tissue adhesion of the bioinspired MN allows for more stable and robust performance for drug delivery, biofluid collection, and biosensing.  相似文献   
280.
Lithium (Li) metal is regarded as the most attractive anode material for high‐energy Li batteries, but it faces unavoidable challenges—uncontrollable dendritic growth of Li and severe volume changes during Li plating and stripping. Herein, a porous carbon framework (PCF) derived from a metal–organic framework (MOF) is proposed as a dual‐phase Li storage material that enables efficient and reversible Li storage via lithiation and metallization processes. Li is electrochemically stored in the PCF upon charging to 0 V versus Li/Li+ (lithiation), making the PCF surface more lithiophilic, and then the formation of metallic Li phase can be induced spontaneously in the internal nanopores during further charging below 0 V versus Li/Li+ (metallization). Based on thermodynamic calculations and experimental studies, it is shown that atomically dispersed zinc plays an important role in facilitating Li plating and that the reversibility of Li storage is significantly improved by controlled nanostructural engineering of 3D porous nanoarchitectures to promote the uniform formation of Li. Moreover, the MOF‐derived PCF does not suffer from macroscopic volume changes during cycling. This work demonstrates that the nanostructural engineering of porous carbon structures combined with lithiophilic element coordination would be an effective approach for realizing high‐capacity, reversible Li‐metal anodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号