首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   16篇
化学   230篇
晶体学   2篇
力学   6篇
数学   50篇
物理学   67篇
无线电   67篇
  2023年   6篇
  2022年   1篇
  2021年   8篇
  2020年   5篇
  2019年   6篇
  2018年   6篇
  2017年   9篇
  2016年   14篇
  2015年   13篇
  2014年   18篇
  2013年   44篇
  2012年   39篇
  2011年   42篇
  2010年   28篇
  2009年   19篇
  2008年   36篇
  2007年   31篇
  2006年   19篇
  2005年   19篇
  2004年   23篇
  2003年   8篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有422条查询结果,搜索用时 15 毫秒
41.
We develop and test numerically a lattice-Boltzmann (LB) model for nonideal fluids that incorporates thermal fluctuations. The fluid model is a momentum-conserving thermostat, for which we demonstrate how the temperature can be made equal at all length scales present in the system by having noise both locally in the stress tensor and by shaking the whole system in accord with the local temperature. The validity of the model is extended to a broad range of sound velocities. Our model features a consistent coupling scheme between the fluid and solid molecular dynamics objects, allowing us to use the LB fluid as a heat bath for solutes evolving in time without external Langevin noise added to the solute. This property expands the applicability of LB models to dense, strongly correlated systems with thermal fluctuations and potentially nonideal equations of state. Tests on the fluid itself and on static and dynamic properties of a coarse-grained polymer chain under strong hydrodynamic interactions are used to benchmark the model. The model produces results for single-chain diffusion that are in quantitative agreement with theory.  相似文献   
42.
We use the three-dimensional Mercedes-Benz model for water and Monte Carlo simulations to study the structure and thermodynamics of the hydrophobic interaction. Radial distribution functions are used to classify different cases of the interaction, namely, contact configurations, solvent separated configurations, and desolvation configurations. The temperature dependence of these cases is shown to be in qualitative agreement with atomistic models of water. In particular, while the energy for the formation of contact configurations is favored by entropy, its strengthening with increasing temperature is accounted for by enthalpy. This is consistent with our simulated heat capacity. An important feature of the model is that it can be used to account for well-converged thermodynamics quantities, e.g., the heat capacity of transfer. Microscopic mechanisms for the temperature dependence of the hydrophobic interaction are discussed at the molecular level based on the conceptual simplicity of the model.  相似文献   
43.
The limitation of current dissociative fluorescence enhancement techniques is that the lanthanide chelate structures used as molecular probes are not stable enough in one-step assays with high concentrations of complexones or metal ions in the reaction mixture since these substances interfere with lanthanide chelate conjugated to the detector molecule. Lanthanide chelates of diethylenetriaminepentaacetic acid (DTPA) are extremely stable, and we used EuDTPA derivatives conjugated to antibodies as tracers in one-step immunoassays containing high concentrations of complexones or metal ions. Enhancement solutions based on different β-diketones were developed and tested for their fluorescence-enhancing capability in immunoassays with EuDTPA-labelled antibodies. Characteristics tested were fluorescence intensity, analytical sensitivity, kinetics of complex formation and signal stability. Formation of fluorescent complexes is fast (5 min) in the presented enhancement solution with EuDTPA probes withstanding strong complexones (ethylenediaminetetra acetate (EDTA) up to 100 mM) or metal ions (up to 200 μM) in the reaction mixture, the signal is intensive, stable for 4 h and the analytical sensitivity with Eu is 40 fmol/L, Tb 130 fmol/L, Sm 2.1 pmol/L and Dy 8.5 pmol/L. With the improved fluorescence enhancement technique, EDTA and citrate plasma samples as well as samples containing relatively high concentrations of metal ions can be analysed using a one-step immunoassay format also at elevated temperatures. It facilitates four-plexing, is based on one chelate structure for detector molecule labelling and is suitable for immunoassays due to the wide dynamic range and the analytical sensitivity.  相似文献   
44.
We have performed a comprehensive theoretical investigation of the structural principles of semiconducting clathrate frameworks composed of the Group 14 elements carbon, silicon, germanium, and tin. We have investigated the basic clathrate frameworks, together with their polytypes, intergrowth clathrate frameworks, and extended frameworks based on larger icosahedral building blocks. Quantum chemical calculations with the PBE0 hybrid density functional method provided a clear overview of the structural trends and electronic properties among the various clathrate frameworks. In agreement with previous experimental and theoretical studies, the clathrate II framework proved to be the energetically most favorable, but novel hexagonal polytypes of clathrate II also proved to be energetically very favorable. In the case of silicon, several of the studied clathrate frameworks possess direct and wide band gaps. The band structure diagrams and simulated powder X-ray patterns of the studied frameworks are provided and systematic preliminary evaluation of guest-occupied frameworks is conducted to shed light on the characteristics of novel, experimentally feasible clathrate compositions.  相似文献   
45.
Chemical vapor deposition of a thin titanium dioxide (TiO2) film on lightweight native nanocellulose aerogels offers a novel type of functional material that shows photoswitching between water‐superabsorbent and water‐repellent states. Cellulose nanofibrils (diameters in the range of 5–20 nm) with native crystalline internal structures are topical due to their attractive mechanical properties, and they have become relevant for applications due to the recent progress in the methods of their preparation. Highly porous, nanocellulose aerogels are here first formed by freeze‐drying from the corresponding aqueous gels. Well‐defined, nearly conformal TiO2 coatings with thicknesses of about 7 nm are prepared by chemical vapor deposition on the aerogel skeleton. Weighing shows that such TiO2‐coated aerogel specimens essentially do not absorb water upon immersion, which is also evidenced by a high contact angle for water of 140° on the surface. Upon UV illumination, they absorb water 16 times their own weight and show a vanishing contact angle on the surface, allowing them to be denoted as superabsorbents. Recovery of the original absorption and wetting properties occurs upon storage in the dark. That the cellulose nanofibrils spontaneously aggregate into porous sheets of different length scales during freeze‐drying is relevant: in the water‐repellent state they may stabilize air pockets, as evidenced by a high contact angle, in the superabsorbent state they facilitate rapid water‐spreading into the aerogel cavities by capillary effects. The TiO2‐coated nanocellulose aerogels also show photo‐oxidative decomposition, i.e., photocatalytic activity, which, in combination with the porous structure, is interesting for applications such as water purification. It is expected that the present dynamic, externally controlled, organic/inorganic aerogels will open technically relevant approaches for various applications.  相似文献   
46.
One of the biggest technology trends in wirelessbroadband, radar, sonar, and broadcasting systems issoftware radio frequency processing and digitalfront-end. This trend encompasses a broad range oftopics, from circuit design and signal processing to systemintegration. It includes digital up-conversion (DUC) and  相似文献   
47.
This article demonstrates how important it is to find the optimal heating conditions when electrospun organic/inorganic composite fibers are annealed to get ceramic nanofibers in appropriate quality (crystal structure, composition, and morphology) and to avoid their disintegration. Polyvinylpyrrolidone [PVP, (C6H9NO) n ] and ammonium metatungstate [AMT, (NH4)6[H2W12O40nH2O] nanofibers were prepared by electrospinning aqueous solutions of PVP and AMT. The as-spun fibers and their annealing were characterized by TG/DTA-MS, XRD, SEM, Raman, and FTIR measurements. The 400–600 nm thick and tens of micrometer long PVP/AMT fibers decomposed thermally in air in four steps, and pure monoclinic WO3 nanofibers formed between 500 and 600 °C. When a too high heating rate and heating temperature (10 °C min−1, 600 °C) were used, the WO3 nanofibers completely disintegrated. At lower heating rate but too high temperature (1 °C min−1, 600 °C), the fibers broke into rods. If the heating rate was adequate, but the annealing temperature was too low (1 °C min−1, 500 °C), the nanofiber morphology was excellent, but the sample was less crystalline. When the optimal heating rate and temperature (1 °C min−1, 550 °C) were applied, WO3 nanofibers with excellent morphology (250 nm thick and tens of micrometer long nanofibers, which consisted of 20–80 nm particles) and crystallinity (monoclinic WO3) were obtained. The FTIR and Raman measurements confirmed that with these heating parameters the organic matter was effectively removed from the nanofibers and monoclinic WO3 was present in a highly crystalline and ordered form.  相似文献   
48.
A model transport system is considered in which a pulse of tracer molecules is advected along a flow channel with porous walls. The advected tracer thus undergoes diffusion, matrix-diffusion, inside the walls, which affects the breakthrough curve of the tracer. Analytical solutions in the form of series expansions are derived for a number of situations which include a finite depth of the porous matrix, varying aperture of the flow channel, and longitudinal diffusion and Taylor dispersion of the tracer in the flow channel. Novel expansions for the Laplace transforms of the concentration in the channel facilitated closed-form expressions for the solutions. A rigorous result is also derived for the asymptotic form of the breakthrough curve for a finite depth of the porous matrix, which is very different from that for an infinite matrix. A specific experimental system was created for validation of matrix-diffusion modeling for a matrix of finite depth. A previously reported fracture-column experiment was also modeled. In both cases model solutions gave excellent fits to the measured breakthrough curves with very consistent values for the diffusion coefficients used as the fitting parameters. The matrix-diffusion modeling performed could thereby be validated.  相似文献   
49.
We derive stencils, i.e., difference schemes, for differential operators for which the discretization error becomes isotropic in the lowest order. We treat the Laplacian, Bilaplacian (= biharmonic operator), and the gradient of the Laplacian both in two and three dimensions. For three dimensions ??(h2) results are given while for two dimensions both ??(h2) and ??(h4) results are presented. The results are also available in electronic form as a Mathematica file. It is shown that the extra computational cost of an isotropic stencil usually is less than 20%. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   
50.
We study the nucleation and growth of flame fronts in slow combustion. This is modeled by a set of reaction-diffusion equations for the temperature field, coupled to a background of reactants and augmented by a term describing random temperature fluctuations for ignition. We establish connections between this model and the classical theories of nucleation and growth of droplets from a metastable phase. Our results are in good agreement with theoretical predictions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号