首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   407篇
  免费   15篇
化学   230篇
晶体学   2篇
力学   6篇
数学   50篇
物理学   67篇
无线电   67篇
  2023年   6篇
  2022年   1篇
  2021年   8篇
  2020年   5篇
  2019年   6篇
  2018年   6篇
  2017年   9篇
  2016年   14篇
  2015年   13篇
  2014年   18篇
  2013年   44篇
  2012年   39篇
  2011年   42篇
  2010年   28篇
  2009年   19篇
  2008年   36篇
  2007年   31篇
  2006年   19篇
  2005年   19篇
  2004年   23篇
  2003年   8篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有422条查询结果,搜索用时 0 毫秒
101.
Reactions during the atomic layer deposition (ALD) process of ZrO(2) from Cp(2)Zr(CH(3))(2) and deuterated water as precursors were studied with a quadrupole mass spectrometer (QMS) at 210-440 degrees C. The detected reaction byproducts were CpD (m/z = 67) and CH(3)D (m/z = 17). Almost all (90%) of the CH(3) ligands were released during the Cp(2)Zr(CH(3))(2) precursor pulse because of exchange reactions with the OD-terminated surface, and the rest, during the D(2)O pulse. About 40% of the CpD was released during the metal precursor pulse, and 60%, during the D(2)O pulse. ALD-type self-limiting growth was confirmed from 210 to 400 degrees C. However, below 300 degrees C the growth rate was low. Precursor decomposition affected the film growth mechanism at temperatures exceeding 400 degrees C.  相似文献   
102.
Structural preferences of single-walled and coordinatively saturated spherical and tubular nanostructures of silica have been determined by ab initio calculations. Two families of spherical (SiO2)n clusters derived from Platonic solids and Archimedean polyhedra are depicted, with n ranging from 4-120. The analogue of a truncated icosidodecahedron, Ih-symmetric Si120O240, is favored in energy, closely followed by the Ih-symmetric Si60O120-truncated icosahedron. The silica nanotubes derived from spherical clusters are capped by Si2O2 rings, whereas the tubular section consists of single oxygen bridges. Periodic studies performed with open-ended silica nanotubes and the alpha-quartz polymorph of silica, along with a comparisons to fullerenes and carbon nanotubes, suggest that tubes with diameters of approximately 1 nm should be chemically stable.  相似文献   
103.
Hydrolytic reactions of the structural analogue of guanylyl-(3',3')-uridine, guanylyl-(3',3')-(2'-amino-2'-deoxyuridine), having one of the 2'-hydroxyl groups replaced with an amino function, have been followed by RP HPLC in the pH range 0-13 at 90 degrees C. The results are compared to those obtained earlier with guanylyl-(3',3')-uridine, guanylyl-(3',3')-(2',5'-di-O-methyluridine), and uridylyl-(3',5')-uridine. Under basic conditions (pH > 8), the hydroxide ion-catalyzed cleavage of the P-O3' bond (first-order in [OH(-)]) yields a mixture of 2'-amino-2'-deoxyuridine and guanosine 2',3'-cyclic phosphate which is hydrolyzed to guanosine 2'- and 3'-phosphates. Under these conditions, guanylyl-(3',3')-(2'-amino-2'-deoxyuridine) is 10 times less reactive than guanylyl-(3',3')-uridine. Under acidic and neutral conditions (pH 3-8), where the pH-rate profile for the cleavage consists of two pH-independent regions (from pH 3 to pH 4 and from 6 to 8), guanylyl-(3',3')-(2'-amino-2'-deoxyuridine) is considerably reactive. For example, in the latter pH range, guanylyl-(3',3')-(2'-amino-2'-deoxyuridine) is more than 2 orders of magnitude more labile than guanylyl-(3',3')-(2',5'-di-O-methyluridine), while in the former pH range the reactivity difference is 1 order of magnitude. Under very acidic conditions (pH < 3), the isomerization giving guanylyl-(2',3')-(2'-amino-2'-deoxyuridine) and depurination yielding guanine (both first-order in [H(+)]) compete with the cleavage. The Zn(2+)-promoted cleavage ([Zn(2+)] = 5 mmol L(-)(1)) is 15 times faster than the uncatalyzed reaction at pH 5.6. The mechanisms of the reactions of guanylyl-(3',3')-(2'-amino-2'-deoxyuridine) are discussed, particularly focusing on the possible stabilization of phosphorane intermediate and/or transition state via an intramolecular hydrogen bonding by the 2'-amino group.  相似文献   
104.
In this paper, the effects of environmental stresses on the properties of polymeric optical waveguides were investigated. Optical multimode waveguides were embedded on printed circuit boards by employing commercial polymers. Three optical-PCB constructions varying in board structure and in optical build-up materials were compared. The guide systems were subjected to four different tests: damp heat-high humidity, isothermal annealing, thermal shock and environmental flowing multigas test. Isothermal annealing reduced the refractive index to greatest extent. The optical-PCB structure with optical surface build-up layer was observed to be more vulnerable under temperature shock when compared with the O-PCB with optical inner layer. The buffer layer beneath the optical build-up was found to improve the stability of the optical waveguides significantly. The results indicated of a wavelength dependence to the aging factor with a failure mechanism. The factors affecting the performance and reliability of polymer-based optical waveguides on PCBs were discussed.  相似文献   
105.
106.
Eumelanin is an important pigment, for example, in skin, hair, eyes, and the inner ear. It is a highly heterogeneous polymer with 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and 5,6-dihydroxyindole (DHI) building blocks, of which DHICA is reported as the more abundant in natural eumelanin. The DHICA-eumelanin protomolecule consists of three building blocks, indole-2-carboxylic acid-5,6-quinone (ICAQ), DHICA and pyrrole-2,3,5-tricarboxylic acid (PTCA). Here, we focus on the self-assembly of DHICA-eumelanin using multi-microsecond molecular dynamics (MD) simulations at various concentrations in aqueous solutions. The molecule was first parameterized using density functional theory (DFT) calculations. Three types of systems were studied: (1) uncharged DHICA-eumelanin, (2) charged DHICA-eumelanin corresponding to physiological pH, and (3) a binary mixture of both of the above protomolecules. In the case of uncharged DHICA-eumelanin, spontaneous aggregation occurred and water molecules were present inside the aggregates. In the systems corresponding to physiological pH, all the carboxyl groups are negatively charged and the DHICA-eumelanin model has a net charge of 4. The effect of K+ ions as counterions was investigated. The results show high probability of binding to the deprotonated oxygens of the carboxylate anions in the PTCA moiety. Furthermore, the K+ counterions increased the solubility of DHICA-eumelanin in its charged form. A possible explanation is that the charged protomolecules favor binding to the K+ ions rather than aggregating and binding to other protomolecules. The binary mixtures show aggregation of uncharged DHICA-eumelanins; unlike the charged systems with no aggregation, a few charged DHICA-eumelanins are present on the surface of the uncharged aggregation, binding to the K+ ions.  相似文献   
107.
Wireless standards are evolving rapidly due to the exponential growth in the number of portable devices along with the applications with high data rate requirements. Adaptable software based signal processing implementations for these devices can make the deployment of the constantly evolving standards faster and less expensive. The flagship technology from the IEEE WLAN family, the IEEE 802.11ac, aims at achieving very high throughputs in local area connectivity scenarios. This article presents a software based implementation for the Multiple Input and Multiple Output (MIMO) transmitter and receiver baseband processing conforming to the IEEE 802.11ac standard which can achieve transmission bit rates beyond 1Gbps. This work focuses on the Physical layer frequency domain processing. Various configurations, including 2×2 and 4×4 MIMO are considered for the implementation. To utilize the available data and instruction level parallelism, a DSP core with vector extensions is selected as the implementation platform. Then, the feasibility of the presented software-based solution is assessed by studying the number of clock cycles and power consumption of the different scenarios implemented on this core. Such Software Defined Radio based approaches can potentially offer more flexibility, high energy efficiency, reduced design efforts and thus shorter time-to-market cycles in comparison with the conventional fixed-function hardware methods.  相似文献   
108.
In this work we report the performance of the SiO2/Si3N4/HfO2 and SiO2/Si3N4/ZrO2 stacks with emphasis on the influence of atomic layer deposition chemistry used for forming the HfO2 and ZrO2 blocking layers. Two Hf precursors were employed – tetrakis(ethylmethylamino)hafnium (TEMAH) and bis(methylcyclopentadienyl)methoxymethyl hafnium (HfD-04). For ZrO2, tetrakis(ethylmethylamino)zirconium (TEMAZ) and bis(methylcyclopentadienyl)methoxymethyl zirconium (ZrD-04) were used as metal precursors. Ozone was used as the oxygen source. The structural characteristics of the stacks were examined by transmission electron microscopy and grazing incidence X-ray diffraction. The electrical properties of the stacks were studied using platinum-gated capacitor structures. The memory performance of the stacks was evaluated by write/erase (W/E) measurements, endurance and retention testing. Endurance measurements revealed the most important difference between the stacks. The films grown from TEMAH and TEMAZ could withstand a significantly higher number of W/E pulses (>3 × 105 in the 10 V/?11 V, 10 ms regime), in comparison to the stacks made from HfD-04 and ZrD-04 precursors (<5 × 103 W/E cycles). This difference in endurance characteristics is attributed mainly to the different deposition temperatures suited for these two precursors and the nature of the layer formed at the Si3N4/HfO2 and the Si3N4/ZrO2 interfaces.  相似文献   
109.
Low energy consumption is a critical design requirement for most wireless sensor network (WSN) applications. Due to minimal transmission power levels, time-varying environmental factors and mobility of nodes, network neighborhood changes frequently. In these conditions, the most critical issue for energy is to minimize the transactions and time consumed for neighbor discovery operations. In this paper, we present an energy-efficient neighbor discovery protocol targeted at synchronized low duty-cycle medium access control (MAC) schemes such as IEEE 802.15.4 and S-MAC. The protocol effectively reduces the need for costly network scans by proactively distributing node schedule information in MAC protocol beacons and by using this information for establishing new communication links. Energy consumption is further reduced by optimizing the beacon transmission rate. The protocol is validated by performance analysis and experimental measurements with physical WSN prototypes. Experimental results show that the protocol can reduce node energy consumption up to 80% at 1–3 m/s node mobility.  相似文献   
110.
Using extensive atomistic simulations, we show that there is a single experimentally accessible parameter--the sterol tilt--that can be used to determine a sterol's capability to induce order, and thus to promote, e.g., formation of lipid rafts. The observations also facilitate designing new effective sterols.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号