首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   445篇
  免费   17篇
化学   241篇
晶体学   2篇
力学   6篇
数学   70篇
物理学   74篇
无线电   69篇
  2023年   7篇
  2022年   1篇
  2021年   8篇
  2020年   6篇
  2019年   6篇
  2018年   6篇
  2017年   9篇
  2016年   15篇
  2015年   13篇
  2014年   18篇
  2013年   47篇
  2012年   40篇
  2011年   43篇
  2010年   31篇
  2009年   21篇
  2008年   38篇
  2007年   33篇
  2006年   25篇
  2005年   19篇
  2004年   25篇
  2003年   9篇
  2002年   9篇
  2001年   4篇
  2000年   8篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有462条查询结果,搜索用时 15 毫秒
91.
The first examples of pentanuclear heterotrimetallic [(LnNi)(2)Ru] [Ln(3+) = Gd (1) and Dy (2)] complexes were prepared and magnetostructurally characterized. They exhibit ferromagnetic interactions, leading to a high-magnetic-moment ground state.  相似文献   
92.
We show that for a simple surface with boundary the attenuated ray transform in the presence of a unitary connection and a skew-Hermitian Higgs field is injective modulo the natural obstruction for functions and vector fields. We also show that the connection and the Higgs field are uniquely determined by the scattering relation modulo a gauge transformation. The proofs involve a Pestov type energy identity for connections together with holomorphic gauge transformations which arrange the curvature of the connection to have definite sign.  相似文献   
93.
Capillary pressure is considered in packed-beds of spherical particles. In the case of gas–liquid flows in packed-bed reactors, capillary pressure gradients can have a significant influence on liquid distribution and, consequently, on the overall reactor performance. In particular, capillary pressure is important for non-uniform liquid distribution, causing liquid spreading as it flows down the packing. An analytical model for capillary pressure–saturation relation is developed for the pendular and funicular regions and the factors affecting capillary pressure in the capillary region are discussed. The present model is compared to the capillary pressure models of Grosser et al. (AIChE J., 34:1850–1860, 1988) and Attou and Ferschneider (Chem. Eng. Sci., 55:491–511, 2000) and to the experiments of Dodds and Srivastava (Part Part Syst. Charact., 23:29–39, 2006) and Dullien et al. (J. Colloid Interface Sci., 127:362–372, 1989). The non-homogeneity of real packings is considered through particle size and porosity distributions. The model is based on the assumption that the particles are covered with a liquid film, which provides hydrodynamic continuity. This makes the model more suitable for porous or rough particles than for non-porous smooth particles. The main improvements of the present model are found in the pendular region, where the liquid dispersion due to capillary pressure gradients is most significant. The model can be used to improve the hydrodynamic models (e.g., CFD and cellular automata models) for packed-bed reactors, such as trickle-bed reactors, where gas, liquid, and solid phases are present. Models for such reactors have become quite common lately (Sáez and Carbonell, AIChE J., 31:52–62, 1985; Holub et al., Chem. Eng. Sci, 47, 2343–2348, 1992; Attou et al., Chem. Eng. Sci., 54:785–802, 1999; Iliuta and Larachi, Chem. Eng. Sci., 54:5039–5045, 1999, IJCRE 3:R4, 2005; Narasimhan et al., AIChE J., 48:2459–2474, 2002), but they still lack proper terms causing liquid dispersion.  相似文献   
94.
陈武  王勇  王水弟 《半导体光电》2000,21(4):291-292,295
设计并制作了200~1100nm的光响应测试系统,该系统工作稳定可靠,并可消除光源拌动和突发性光源对测试的影响。  相似文献   
95.
A new method to prepare plasmonically active noble metal nanostructures on large surface area silicon nanowires (SiNWs) mediated by atomic layer deposition (ALD) technology has successfully been demonstrated for applications of surface‐enhanced Raman spectroscopy (SERS)‐based sensing. As host material for the plasmonically active nanostructures we use dense single‐crystalline SiNWs with diameters of less than 100 nm as obtained by a wet chemical etching method based on silver nitrate and hydrofluoric acid solutions. The SERS active metal nanoparticles/islands are made from silver (Ag) shells as deposited by autometallography on the core nanoislands made from platinum (Pt) that can easily be deposited by ALD in the form of nanoislands covering the SiNW surfaces in a controlled way. The density of the plasmonically inactive Pt islands as well as the thickness of noble metal Ag shell are two key factors determining the magnitude of the SERS signal enhancement and sensitivity of detection. The optimized Ag coated Pt islands on SiNWs exhibit great potential for ultrasensitive molecular sensing in terms of high SERS signal enhancement ability, good stability and reproducibility. The plasmonic activity of the core‐shell Pt//Ag system that will be experimentally realized in this paper as an example was demonstrated in numerical finite element simulations as well as experimentally in Raman measurements of SERS activity of a highly diluted model dye molecule. The morphology and structure of the core‐shell Pt//Ag nanoparticles on SiNW surfaces were investigated by scanning‐ and transmission electron microscopy. Optimized core–shell nanoparticle geometries for maximum Raman signal enhancement is discussed essentially based on the finite element modeling.  相似文献   
96.
Chemical vapor deposition of a thin titanium dioxide (TiO2) film on lightweight native nanocellulose aerogels offers a novel type of functional material that shows photoswitching between water‐superabsorbent and water‐repellent states. Cellulose nanofibrils (diameters in the range of 5–20 nm) with native crystalline internal structures are topical due to their attractive mechanical properties, and they have become relevant for applications due to the recent progress in the methods of their preparation. Highly porous, nanocellulose aerogels are here first formed by freeze‐drying from the corresponding aqueous gels. Well‐defined, nearly conformal TiO2 coatings with thicknesses of about 7 nm are prepared by chemical vapor deposition on the aerogel skeleton. Weighing shows that such TiO2‐coated aerogel specimens essentially do not absorb water upon immersion, which is also evidenced by a high contact angle for water of 140° on the surface. Upon UV illumination, they absorb water 16 times their own weight and show a vanishing contact angle on the surface, allowing them to be denoted as superabsorbents. Recovery of the original absorption and wetting properties occurs upon storage in the dark. That the cellulose nanofibrils spontaneously aggregate into porous sheets of different length scales during freeze‐drying is relevant: in the water‐repellent state they may stabilize air pockets, as evidenced by a high contact angle, in the superabsorbent state they facilitate rapid water‐spreading into the aerogel cavities by capillary effects. The TiO2‐coated nanocellulose aerogels also show photo‐oxidative decomposition, i.e., photocatalytic activity, which, in combination with the porous structure, is interesting for applications such as water purification. It is expected that the present dynamic, externally controlled, organic/inorganic aerogels will open technically relevant approaches for various applications.  相似文献   
97.
98.
99.
100.
We formulate a sufficient condition for the existence of a consistent price system (CPS), which is weaker than the conditional full support condition (CFS). We use the new condition to show the existence of CPSs for certain processes that fail to have the CFS property. In particular this condition gives sufficient conditions, under which a continuous function of a process with CFS admits a CPS, while the CFS property might be lost.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号