首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18562篇
  免费   1012篇
  国内免费   221篇
化学   11770篇
晶体学   130篇
力学   894篇
综合类   3篇
数学   1981篇
物理学   2716篇
无线电   2301篇
  2024年   36篇
  2023年   189篇
  2022年   571篇
  2021年   883篇
  2020年   837篇
  2019年   900篇
  2018年   930篇
  2017年   793篇
  2016年   1167篇
  2015年   770篇
  2014年   1125篇
  2013年   1950篇
  2012年   1459篇
  2011年   1335篇
  2010年   921篇
  2009年   844篇
  2008年   844篇
  2007年   755篇
  2006年   544篇
  2005年   508篇
  2004年   333篇
  2003年   313篇
  2002年   264篇
  2001年   124篇
  2000年   89篇
  1999年   102篇
  1998年   70篇
  1997年   85篇
  1996年   84篇
  1995年   54篇
  1994年   58篇
  1993年   39篇
  1992年   56篇
  1991年   53篇
  1990年   51篇
  1989年   55篇
  1988年   43篇
  1987年   56篇
  1986年   42篇
  1985年   55篇
  1984年   55篇
  1983年   31篇
  1982年   41篇
  1981年   28篇
  1980年   40篇
  1979年   28篇
  1978年   27篇
  1977年   18篇
  1976年   20篇
  1974年   17篇
排序方式: 共有10000条查询结果,搜索用时 536 毫秒
991.
Recently, concerns have been raised globally about antimicrobial resistance, the prevalence of which has increased significantly. Carbapenem-resistant Klebsiella pneumoniae (KPC) is considered one of the most common resistant bacteria, which has spread to ICUs in Saudi Arabia. This study was established to investigate the antibacterial activity of biosynthesized zinc oxide nanoparticles (ZnO-NPs) against KPC in vitro and in vivo. In this study, we used the aqueous extract of Acacia nilotica (L.) fruits to mediate the synthesis of ZnO-NPs. The nanoparticles produced were characterized by UV-vis spectroscopy, zetasizer and zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of ZnO-NPs against KPC was determined via the well diffusion method, and determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the results showed low MIC and MBC when compared with the MIC and MBC of Imipenem and Meropenem antibiotics. The results of in vitro analysis were supported by the results upon applying ZnO-NP ointment to promote wound closure of rats, which showed better wound healing than the results with imipenem ointment. The biosynthesized ZnO-NPs showed good potential for use against bacteria due to their small size, applicability, and low toxicity to human cells.  相似文献   
992.
A total of fourteen pyrazoline derivatives were synthesized through cyclo-condensation reactions by chalcone derivatives with different types of semicarbazide. These compounds were characterized by IR, 1D-NMR (1H, 13C and Distortionless Enhancement by Polarization Transfer - DEPT-135) and 2D-NMR (COSY, HSQC and HMBC) as well as mass spectroscopy analysis (HRMS). The synthesized compounds were tested for their antituberculosis activity against Mycobacterium tuberculosis H37Ra in vitro. Based on this activity, compound 4a showed the most potent inhibitory activity, with a minimum inhibitory concentration (MIC) value of 17 μM. In addition, six other synthesized compounds, 5a and 5c–5g, exhibited moderate activity, with MIC ranges between 60 μM to 140 μM. Compound 4a showed good bactericidal activity with a minimum bactericidal concentration (MBC) value of 34 μM against Mycobacterium tuberculosis H37Ra. Molecular docking studies for compound 4a on alpha-sterol demethylase was done to understand and explore ligand–receptor interactions, and to hypothesize potential refinements for the compound.  相似文献   
993.
The reaction of 5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole-2(3H)-thione 3 with formaldehyde solution and primary aromatic amines or 1-substituted piperazines, in ethanol at room temperature yielded the corresponding N-Mannich bases 3-arylaminomethyl-5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole-2(3H)-thiones 4a–l or 3-[(4-substituted piperazin-1-yl)methyl]-5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole-2(3H)-thiones 5a–d, respectively. The in vitro inhibitory activity of compounds 4a–l and 5a–d was assessed against pathogenic Gram-positive, Gram-negative bacteria, and the yeast-like pathogenic fungus Candida albicans. The piperazinomethyl derivatives 5c and 5d displayed broad-spectrum antibacterial activities the minimal inhibitory concentration (MIC) 0.5–8 μg/mL) and compounds 4j, 4l, 5a, and 5b showed potent activity against the tested Gram-positive bacteria. In addition, the anti-proliferative activity of the compounds was evaluated against prostate cancer (PC3), human colorectal cancer (HCT-116), human hepatocellular carcinoma (HePG-2), human epithelioid carcinoma (HeLa), and human breast cancer (MCF7) cell lines. The optimum anti-proliferative activity was attained by compounds 4l, 5a, 5c, and 5d.  相似文献   
994.
Heavy metals are the harmful elements, regarded as carcinogens. Nevertheless, owing to their physical and chemical properties, they are still used in the production of several commercial products. Utilization of such products increases the chance for the exposure of heavy metals, some of them are categorized as probable human carcinogens (Group 1) by the International Agency for Research on Cancer. Exposure of heavy metals to school children at early age can result severe life time health issues and high chance of emerging cancer. Thus, we have performed study relating to the presence of heavy metals in acrylic color paints commonly used by the school children. Acrylic paints of different colors were assayed for seven potential heavy metals manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb) using microwave digestion and iCAPQ inductively coupled plasma mass spectrometry (ICP-MS) system. The optimized method including paints digestion reagents nitric acid (HNO3, 65%, 5 mL) and hydrofluoric acid (HF, 40%, 2 mL) have offered excellent method performance with recovery values ranged between 99.33% and 105.67%. The elements were identified in all of the analyzed samples with concentrations ranged from 0.05 to 372.59 µg/g. Cd constitutes the lower percentage (0.05%), whereas Zn constitutes high ratio contribution which was tremendously high (68.33%). Besides, the paints contamination was also color specific, with considerably total heavy metal concentrations found in brunt umber (526.57 µg/g) while scarlet color (12.62 µg/g) contained lower amounts. The outcomes of our investigation highlight the necessity for guidelines addressing the heavy metals in acrylic color paints intended for the school children usage.  相似文献   
995.
The Friedel–Crafts reaction between substituted indoles as nucleophiles with chalcones-based benzofuran and benzothiophene scaffolds was carried out by employing a highly efficient bimetallic iron–palladium catalyst system. This catalytic approach produced the desired bis-heteroaryl products with low catalyst loading, a simple procedure, and with acceptable yield. All synthesized indole scaffolds 3a–3s were initially evaluated for their cytotoxic effect against human fibroblast BJ cell lines and appeared to be non-cytotoxic. All non-cytotoxic compounds 3a–3s were then evaluated for their anticancer activities against cervical cancer HeLa, prostate cancer PC3, and breast cancer MCF-7 cell lines, in comparison to standard drug doxorubicin, with IC50 values 1.9 ± 0.4 µM, 0.9 ± 0.14 µM and 0.79 ± 0.05 µM, respectively, and appeared to be moderate to weak anticancer agents. Fluoro-substituted chalcone moiety-containing compounds, 3b appeared to be the most active member of the series against cervical HeLa (IC50 = 8.2 ± 0.2 µM) and breast MCF-7 cancer cell line (IC50 = 12.3 ± 0.04 µM), whereas 6-fluroindol-4-bromophenyl chalcone-containing compound 3e (IC50 = 7.8 ± 0.4 µM) appeared to be more active against PC3 prostate cancer cell line.  相似文献   
996.
Soil salinity disrupts the physiological and biochemical processes of crop plants and ultimately leads to compromising future food security. Sodium nitroprusside (SNP), a contributor to nitric oxide (NO), holds the potential to alleviate abiotic stress effects and boost tolerance in plants, whereas less information is available on its role in salt-stressed lentils. We examined the effect of exogenously applied SNP on salt-stressed lentil plants by monitoring plant growth and yield-related attributes, biochemistry of enzymes (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)) amassing of leaf malondialdehyde (MDA) and hydrogen peroxide (H2O2). Salinity stress was induced by NaCl application at concentrations of 50 mM (moderate salinity) and 100 mM (severe salinity), while it was alleviated by SNP application at concentrations of 50 µM and 100 µM. Salinity stress severely inhibited the length of roots and shoots, the relative water content, and the chlorophyll content of the leaves, the number of branches, pods, seeds, seed yield, and biomass per plant. In addition, MDA, H2O2 as well as SOD, CAT, and POD activities were increased with increasing salinity levels. Plants supplemented with SNP (100 µM) showed a significant improvement in the growth- and yield-contributing parameters, especially in plants grown under moderate salinity (50 mM NaCl). Essentially, the application of 100 µM SNP remained effective to rescue lentil plants under moderate salinity by regulating plant growth and biochemical pathways. Thus, the exogenous application of SNP could be developed as a useful strategy for improving the performance of lentil plants in salinity-prone environments.  相似文献   
997.
Journal of Thermal Analysis and Calorimetry - The present paper deals with the economic viability of a coal-fired power plant (CFPP) situated in the northern part of India. The plant with a...  相似文献   
998.

Fluid atomic behavior is an important factor for industrial applications. Computer simulations based on simple models predict Poiseuille flow for these atomic structures with the presence of external force. In this work, we describe the dynamical properties of Ar and O2 flows with precise atomic arrangement via dissipative particle dynamics (DPD) and molecular dynamics (MD) simulation approaches. In these methods, each model is represented by using Large-scale Atomic/Molecular Massively Parallel Simulator package. Simulation results show that maximum rate for velocity of Ar flow in platinum and copper microchannels is 0.100 (unit less)/0.091 Å ps?1 and 0.121 (unit less)/0.105 Å ps?1 by using DPD/MD approach. This atomic parameter changes to 0.111 (unit less)/0.102 Å ps?1 and 0.125 (unit less)/0.108 Å ps?1 for O2 fluid with mentioned approaches. By decreasing the microchannel size, the maximum rate of velocity reaches to 0.101 (unit less)/0.099 Å ps?1 and maximum temperature rate decreases to 485 (unit less)/440 K with DPD/MD approaches. These calculated parameters can be used in industrial application designing for some processes such as heat transfer in structures. It was seen that the developed DPD approach was able to simulate the fluid flow and heat transfer of various types of fluids at micro- and nanoscales with suitable accuracy versus MD.

  相似文献   
999.
Journal of Thermal Analysis and Calorimetry - In the present study, the thermal efficiency, convective heat transfer and friction factor analysis are investigated for a flat plate solar collector...  相似文献   
1000.
Journal of Thermal Analysis and Calorimetry - Number of hybrid vehicles has increased around the world significantly. Automotive industry is utilizing the hybridization of the powertrain system to...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号