首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   421篇
  免费   25篇
  国内免费   5篇
化学   252篇
晶体学   6篇
力学   34篇
数学   30篇
物理学   80篇
无线电   49篇
  2024年   1篇
  2023年   1篇
  2022年   7篇
  2021年   14篇
  2020年   22篇
  2019年   13篇
  2018年   15篇
  2017年   13篇
  2016年   20篇
  2015年   13篇
  2014年   23篇
  2013年   48篇
  2012年   42篇
  2011年   49篇
  2010年   26篇
  2009年   14篇
  2008年   17篇
  2007年   16篇
  2006年   8篇
  2005年   7篇
  2004年   5篇
  2003年   12篇
  2002年   12篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1998年   3篇
  1997年   4篇
  1994年   1篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1972年   1篇
排序方式: 共有451条查询结果,搜索用时 834 毫秒
441.
In this study, two functionalised nanoporous silica gels containing dipyridyl sub-unit (SiL1 and SiL2) as selective solid-phase extraction materials for separation, pre-concentration and determination of trace levels of Pb(II) ions by inductively coupled plasma optical emission spectroscopy (ICP-OES) was investigated. The experimental parameters including pH, amounts and type of sorbent, sample volume, eluent type and interfering ions on the recovery of the target analytes were investigated, and the optimal experimental conditions were established. Under the optimised operating conditions with the SiL2 as sorbent, an enrichment factor of 300 was obtained. The detection limit based on three times standard deviations of the blanks was 150 ng L–1. The proposed method was applied to the determination of lead in natural and wastewater samples with satisfactory results (recoveries greater than 96.5%, RSDs lower than 5.0%).  相似文献   
442.
Sol–gel reactions continue to be of interest for the preparation of nanostructured materials. Two chemical reactions that are important in the sol–gel process are the hydrolysis and condensation reactions. The rate of the these two reactions are affected by a number of factors such as reaction pH, temperature, humidity, amount of water, type of alkoxide, molar ratio of alkoxide to water, and nature of solvent. Moreover, there is a physical process, that of particle aggregation that is also important in the overall gelation process. The role of solvents in these chemical and physical processes is still not very clear. In order to clarify the role of solvents in the gelation process, small angle light scattering studies (SALS) were carried out. A model system chosen was a colloidal silica solution that contained preformed silica particles of 10–15 nm in diameter. SALS studies indicate that gelation times are independent of the nature of solvent.  相似文献   
443.
Crude oil reservoirs typically contain more water than oil, which is emulsified with the oil. During oil production, the emulsion is broken with demulsifiers. Most recently, based on methyl methacrylate, after which, the water, containing the methyl methacrylate, is discharged into surface waters. Significant health hazards have been associated with methyl methacrylate, and a limit of 30 ppm in ground waters has been established. This paper describes the preconcentration of methyl methacrylate from the separated water, using dispersive liquid–liquid microextraction, followed by freezing of the organic drop in an ice bath which facilitated separation of the phases (by centrifugation). In the optimized method, 15.0 μL of 2-dodecanol was rapidly injected into 5 mL water samples, followed by stirring, freezing, and decantation, then direct injection into the gas chromatograph equipped with a flame ionization detector. The method was optimized for: choice of extraction solvent, volume of extraction solvent, pH, ionic strength, temperature and extraction time.  相似文献   
444.
Context awareness and activity recognition are becoming a hot research topic in ambient intelligence (AmI) and ubiquitous robotics, due to the latest advances in wireless sensor network research which provides a richer set of context data and allows a wide coverage of AmI environments. However, using raw sensor data for activity recognition is subject to different constraints and makes activity recognition inaccurate and uncertain. The Dempster–Shafer evidence theory, known as belief functions, gives a convenient mathematical framework to handle uncertainty issues in sensor information fusion and facilitates decision making for the activity recognition process. Dempster–Shafer theory is more and more applied to represent and manipulate contextual information under uncertainty in a wide range of activity-aware systems. However, using this theory needs to solve the mapping issue of sensor data into high-level activity knowledge. The present paper contributes new ways to apply the Dempster–Shafer theory using binary discrete sensor information for activity recognition under uncertainty. We propose an efficient mapping technique that allows converting and aggregating the raw data captured, using a wireless senor network, into high-level activity knowledge. In addition, we propose a conflict resolution technique to optimize decision making in the presence of conflicting activities. For the validation of our approach, we have used a real dataset captured using sensors deployed in a smart home. Our results demonstrate that the improvement of activity recognition provided by our approaches is up to of 79 %. These results demonstrate also that the accuracy of activity recognition using the Dempster–Shafer theory with the proposed mappings outperforms both naïve Bayes classifier and J48 decision tree.  相似文献   
445.
In this research, thermodynamic properties of the ternary electrolyte system (MgCl2 + Mg(NO3)2 + H2O) were investigated using a potentiometric method. The galvanic cell used had no liquid junction of type: Mg-ISE|MgCl2 (mA), Mg(NO3)2 (mB), H2O|Ag/AgCl. The measurements were performed at T = 298.15 K and at total ionic strengths from 0.001 to 8.000 mol/kg for different series of salt ratios r=mMgCl2/mMg2(NO3) =1.00, 2.50, 5.00, 7.50, 10.00 and 15.00. The PVC based magnesium ion-selective electrode (Mg-ISE) and the Ag/AgCl electrode used in this work were prepared in our laboratory and showed a reasonably good Nernst response. The Pitzer ion interaction model and Harned rule were used to illustrate the ternary electrolyte system investigated. The experimental results showed that both Pitzer model and Harned rule were suitable to be used satisfactorily to describe this ternary system.  相似文献   
446.
Imprinted polymers are now being increasingly considered for active biomedical uses such as drug delivery. In this work, the use of molecularly imprinted polymers (MIPs) in designing new drug delivery devices was studied. Imprinted polymers were prepared from methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross-linker), and bromhexine (as a drug template) using bulk polymerization method. The influence of the template/functional monomer proportion and pH on the achievement of MIPs with pore cavities with a high enough affinity for the drug was investigated. The polymeric devices were further characterized by FT-IR, thermogravimetric analysis, scanning electron microscopy, and binding experiments. The imprinted polymers showed a higher affinity for bromhexine and a slower release rate than the non-imprinted polymers. The controlled release of bromhexine from the prepared imprinted polymers was investigated through in vitro dissolution tests by measuring absorbance at λ max of 310 nm by HPLC-UV. The dissolution media employed were hydrochloric acid at the pH level of 3.0 and phosphate buffers, at pH levels of 6.0 and 8.0, maintained at 37.0 and 25.0 ± 0.5 °C. Results from the analyses showed the ability of MIP polymers to control the release of bromhexine In all cases The imprinted polymers showed a higher affinity for bromhexine and a slower release rate than the non-imprinted polymers. At the pH level of 3.0 and at the temperature of 25 °C, slower release of bromhexine imprinted polymer occurred.  相似文献   
447.
We deal with computer simulation of a transient process in a self-pumped phase conjugate plane-curve loop mirror based on BaTiO3. In optimal circumstances the nonlinear reflectivity and fidelity of such a mirror respectively achieve 0.80-0.90 and 0.95-0.98. The generation of conjugate wave-front occurs due to scattering from the dynamic hologram which is produced in the region of self-intersection of forward and backward beams. In such a model the scenario of passing to unstable generation regimes is similar to the self-pumped phase conjugate plane-plane loop mirror and substantially differs from a single-crystal double phase conjugate mirror.  相似文献   
448.
Nickel films of different thickness ranging from 15 nm to 350 nm were deposited on glass substrates, at different substrate temperatures (313-600 K) under UHV condition. The nano-structure of the films was obtained, using X-ray diffraction (XRD) and atomic force microscopy (AFM). The nano-strain in these films was obtained using the Warren-Averbach method. Their optical properties were measured by spectrophotometry in the spectral range of 190-2500 nm. Kramers-Kronig method was used for the analysis of the reflectivity curves. The absorption peaks of Ni thin films at ∼1.4 eV (transition between the bands near W and K symmetry points) and ∼5.0 eV (transition from L2 to L1 upper) are observed, with an additional bump at about 2 eV. The over-layer thickness was calculated to be less than 3.0 nm, using the Transfer Matrix method. The changes in optical data are related to different phenomena, such as different crystallographic orientations of the grains in these polycrystalline films (film texture), nano-strain, and film surface roughness.  相似文献   
449.
A novel spatial composition spread approach was used successfully to deposit a 52-member library of La2?xSrxCuO4 (0 ? x ? 0.18) using magnetron sputtering combined with physical masking techniques. Two homemade targets of La2CuO4 and La1.82Sr0.18CuO4 were sputtered at a power of 41 W RF and 42 W DC, respectively, in a process gas of 15 mTorr argon. The libraries were sputtered onto LaSrAlO4 (0 0 1), SrTiO3 (1 0 0) and MgO (1 0 0) substrates through a 52-slot shadow mask for which a ?20 V substrate bias was applied to prevent resputtering. The resulting amorphous films were post-annealed (800 °C for 1 h then at 950 °C for 2 h) in a tube sealed with oxygen gas. Wavelength Dispersive Spectroscopy (WDS) analysis revealed the expected linear variation of Sr content from 0 to 0.18 with an approximate change of 0.003 per library member. Transport measurements revealed superconducting transitions as well as changes in the quasiparticle scattering rate. These transitions and scattering rate changes were mapped to produce the T-hole concentration phase diagram.  相似文献   
450.
Mehran Shahraeeni 《Meccanica》2018,53(13):3209-3231
Structural vibration and noise control of a cavity-backed three-layered smart piezo-coupled rectangular panel system under harmonic or transient loads is achieved by using purely active, passive, and hybrid active/passive piezoelectric shunt networks. Problem formulation is based on the classical lamination plate theory, Maxwell’s equation for piezoelectric materials, linear circuit theory, and wave equation for the enclosed acoustic domain. The orthogonal mode expansions along with the modal coupling theory are employed to obtain the coupled differential equations of the electro-mechanical-acoustic system, which are then put into the convenient state-space form, and subsequently solved numerically in both frequency and time domains. A triple-mode hybrid RLC shunt circuit, in series with an external active voltage source and connected to a single electroded piezoelectric segment, is tuned to the dominant resonance frequencies of the composite structure. The linear quadratic optimal control (LQR) theory is adopted for obtaining the active control gains. The frequency and time domain performances of the passive, active and hybrid multi-modal piezoelectric systems are calculated and discussed in terms of sensor output voltage, local sound pressure, and control effort. It is found that the hybrid control methodology with properly tuned circuit parameters can be an excellent candidate for simultaneous vibration and structure-borne noise control of the cavity-coupled smart panel with decreased control effort. Also, the active control strategy integrated in the hybrid control system is demonstrated to enhance the overall system damping characteristics and improve the control authority at frequencies where the passive shunt network performs weakly. Limiting cases are considered and correctness of the mathematical model is verified by using a commercial finite element software as well as by comparisons with the literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号