首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   422篇
  免费   25篇
  国内免费   5篇
化学   253篇
晶体学   6篇
力学   34篇
数学   30篇
物理学   80篇
无线电   49篇
  2024年   2篇
  2023年   1篇
  2022年   7篇
  2021年   14篇
  2020年   22篇
  2019年   13篇
  2018年   15篇
  2017年   13篇
  2016年   20篇
  2015年   13篇
  2014年   23篇
  2013年   48篇
  2012年   42篇
  2011年   49篇
  2010年   26篇
  2009年   14篇
  2008年   17篇
  2007年   16篇
  2006年   8篇
  2005年   7篇
  2004年   5篇
  2003年   12篇
  2002年   12篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1998年   3篇
  1997年   4篇
  1994年   1篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1972年   1篇
排序方式: 共有452条查询结果,搜索用时 15 毫秒
381.
The significant reduction in heavy oil viscosity when mixed with \(\hbox {CO}_{2}\) is well documented. However, for \(\hbox {CO}_{2}\) injection to be an efficient method for improving heavy oil recovery, other mechanisms are required to improve the mobility ratio between the \(\hbox {CO}_{2}\) front and the resident heavy oil. In situ generation of \(\hbox {CO}_{2}\)-foam can improve \(\hbox {CO}_{2}\) injection performance by (a) increasing the effective viscosity of \(\hbox {CO}_{2}\) in the reservoir and (b) increasing the contact area between the heavy oil and injected \(\hbox {CO}_{2}\) and hence improving \(\hbox {CO}_{2}\) dissolution rate. However, in situ generation of stable \(\hbox {CO}_{2}\)-foam capable of travelling from the injection well to the production well is hard to achieve. We have previously published the results of a series of foam stability experiments using alkali and in the presence of heavy crude oil (Farzaneh and Sohrabi 2015). The results showed that stability of \(\hbox {CO}_{2}\)-foam decreased by addition of NaOH, while it increased by addition of \(\hbox {Na}_{2}\hbox {CO}_{3}\). However, the highest increase in \(\hbox {CO}_{2}\)-foam stability was achieved by adding borate to the surfactant solution. Borate is a mild alkaline with an excellent pH buffering ability. The previous study was performed in a foam column in the absence of a porous medium. In this paper, we present the results of a new series of experiments carried out in a high-pressure glass micromodel to visually investigate the performance of borate–surfactant \(\hbox {CO}_{2}\)-foam injection in an extra-heavy crude oil in a transparent porous medium. In the first part of the paper, the pore-scale interactions of \(\hbox {CO}_{2}\)-foam and extra-heavy oil and the mechanisms of oil displacement and hence oil recovery are presented through image analysis of micromodel images. The results show that very high oil recovery was achieved by co-injection of the borate–surfactant solution with \(\hbox {CO}_{2}\), due to in-situ formation of stable foam. Dissolution of \(\hbox {CO}_{2}\) in heavy oil resulted in significant reduction in its viscosity. \(\hbox {CO}_{2}\)-foam significantly increased the contact area between the oil and \(\hbox {CO}_{2}\) significantly and thus the efficiency of the process. The synergy effect between the borate and surfactant resulted in (1) alteration of the wettability of the porous medium towards water wet and (2) significant reduction of the oil–water IFT. As a result, a bank of oil-in-water (O/W) emulsion was formed in the porous medium and moved ahead of the \(\hbox {CO}_{2}\)-foam front. The in-situ generated O/W emulsion has a much lower viscosity than the original oil and plays a major role in the observed additional oil recovery in the range of performed experiments. Borate also made \(\hbox {CO}_{2}\)-foam more stable by changing the system to non-spreading oil and reducing coalescence of the foam bubbles. The results of these visual experiments suggest that borate can be a useful additive for improving heavy oil recovery in the range of the performed tests, by increasing \(\hbox {CO}_{2}\)-foam stability and producing O/W emulsions.  相似文献   
382.
Theranostics are emerging as a pillar of cancer therapy that enable the use of single molecule constructs for diagnostic and therapeutic application. As poly adenosine diphosphate (ADP)-ribose polymerase 1 (PARP-1) is overexpressed in various cancer types, and is localized to the nucleus, PARP-1 can be safely targeted with Auger emitters to induce DNA damage in tumors. Here, we investigated a radioiodinated PARP inhibitor, [125I]KX1, and show drug target specific DNA damage and subsequent killing of BRCA1 and non-BRCA mutant ovarian cancer cells at sub-pharmacological concentrations several orders of magnitude lower than traditional PARP inhibitors. Furthermore, we demonstrated that viable tumor tissue from ovarian cancer patients can be used to screen tumor radiosensitivity ex-vivo, enabling the direct assessment of therapeutic efficacy. Finally, we showed tumors can be imaged by single-photon computed tomography (SPECT) with PARP theranostic, [123I]KX1, in a human ovarian cancer xenograft mouse model. These data support the utility of PARP-1 targeted radiopharmaceutical therapy as a theranostic option for PARP-1 overexpressing ovarian cancers.  相似文献   
383.
A plasticized Cr3+ ion sensor by incorporating 2,3,8,9-tetraphenyl-1,4,7,10-tetraazacyclododeca-1,3,7,9-tetraene (TTCT) ionophore exhibits a good potentiometric response for Cr3+ over a wide concentration range (1.0 x 10(-6)-1.0 x 10(-1) M) with a slope of 19.5 mV per decade. The sensor response is stable for at least three months. Good selectivity for Cr3+ in comparison with alkali, alkaline earth, transition and heavy metal ions, and minimal interference are caused by Li+, Na+, K+, Co2+, Hg2+, Ca2+, Pb2+ and Zn2+ ions, which are known to interfere with other chromium membrane sensors. The TTCT-based electrode shows a fast response time (15 s), and can be used in aqueous solutions of pH 3-5.5. The proposed sensor was used for the potentiometric titration of Cr3+ with EDTA and for a direct potentiometric determination of Cr3+ content in environmental samples.  相似文献   
384.
The construction, performance characteristics, and application of a novel polymeric membrane coated on a graphite electrode with unique selectivity towards SCN- are reported. The electrode was prepared by incorporating Ni(II)-2,2,4,9,9,11-hexamethyltetraazacyclotetradecanediene perchlorate into a plasticized poly(vinyl chloride) membrane. The influences of membrane composition, pH and foreign ions were investigated. The electrode displays a near Nernstian slope (-57.8 mV decade-1) over a wide concentration range of 1 x 10(-7)-1 x 10(-1) M of SCN- ion. The electrode has a detection limit of 4.8 x 10(-8) M (2.8 ng/cm3) SCN- and shows response times of about 15 s and 120 s for low to high and high to low concentration sequences, respectively. The proposed sensor shows high selectivity towards SCN- over several common organic and inorganic anions. The electrode revealed a great enhancement in selectivity coefficients and detection limit for SCN-, in comparison with the previously reported electrodes. It was successfully applied to the direct determination of SCN- in milk and biological samples, and as an indicator electrode in titration of Ag+ ions with thiocyanate.  相似文献   
385.
New polymeric membrane (PME) and coated graphite (CGE) copper(II)-selective electrodes based on 1-hydroxy-2-(prop-2'-enyl)-4-(prop-2'-enyloxy)-9,10-anthraquinone were prepared. The electrodes reveal linear emf-pCu2+ responses over wide concentration ranges (1.0 x 10(-5)-1.0 x 10(-1) M with a slope of 27.3 mV decade-1 for PME and 8.0 x 10(-8)-5.0 x 10(-2) M with a slope of 29.1 mV decade-1 for CGE) and very low limits of detection (8.0 x 10(-6) M for PME and 5.0 x 10(-8) M for CGE). The potentiometric response is independent of the pH of the test solution in the pH range 3.0-6.0. The proposed electrodes possess very good selectivities over a wide variety of other cations, including alkali, alkaline earth, transition and heavy metal ions, the selectivity coefficients for the CGE being much improved over those for the PME. The electrodes were used as indicator electrodes in the potentiometric titration of Cu2+ and in the recovery of copper ions from wastewater.  相似文献   
386.
We study the statistical prediction of a continuous time stochastic process admitting a functional autoregressive representation. We construct an approximation of Parzen's optimal predictor in reproducing kernel spaces framework. To cite this article: F. Mokhtari, T. Mourid, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 65–70  相似文献   
387.
A facile and rapid method for the synthesis of novel imidazole and benzimidazole aromatic acyclic nucleosides is described. Synchronous N-alkylation of imidazole or benzimidazole and potassium aryloxide with methylene iodide in the presence of triethylamine and a catalytic amount of tetrabutylammonium bromide (TBAB) in dry acetonitrile or acetone gave moderate yields of the acycloaromatic nucleoside analogs.  相似文献   
388.
A novel polyacrylonitrile (PAN)–titanium oxide (TiO2) nanofiber adsorbent functionalized with aminopropyltriethoxysilane (APTES) was fabricated by electrospinning. The adsorbent was characterized by SEM, FTIR, TEG and BET analyses. The pore diameter and surface area of the adsorbent were 3.1 nm and 10.8 m2 g?1, respectively. The effects of several variables, such as TiO2 and amine contents, pH, interaction time, initial concentration of metal ions, ionic strength and temperature, were studied in batch experiments. The kinetic data were analyzed by pseudo-first-order, pseudo-second-order and double-exponential models. Two isotherm models, namely Freundlich and Langmuir, were used for analysis of equilibrium data. The maximum adsorption capacities of Th(IV), Ni(II) and Fe(II) by Langmuir isotherm were found to be 250, 147 and 80 mg g?1 at 45 °C with pH of 5, 6 and 5, respectively, and greater adsorption of Th(IV) could be justified with the concept of covalent index and free energy of hydration. Calculation of ΔG°, ΔH° and ΔS° demonstrated that the nature of the Th(IV), Ni(II) and Fe(II) metal ions adsorption onto the PAN–TiO2–APTES nanofiber was endothermic and favorable at a higher temperature. The negative values of ΔG° for Th(IV) showed that the adsorption process was spontaneous, but these values for Ni(II)and Fe(II) were positive and so the adsorption process was unspontaneous. Increasing of ionic strength improved the adsorption of Ni(II) and Fe(II) on nanofiber adsorbent but decreased the adsorption capacity of Th(IV). The adsorption capacity was reduced slightly after six cycles of adsorption–desorption, so the nanofiber adsorbent could be used on an industrial scale. The inhibitory effect of Ni(II) and Fe(II) on the adsorption of Th(IV) was increased with an increase in the concentration of inhibitor metal ions.  相似文献   
389.
Journal of Radioanalytical and Nuclear Chemistry - The possibility of 68Ga-dextran complex formation was analyzed in an HEPES-buffered (pH = 4.5) as well as in an alkaline...  相似文献   
390.
The oxygen-containing free radical species form upon interaction of amphiphilic substances such as sodium dodecyl sulfate and hemoglobin. Under these conditions, hemoglobin is converted to methemoglobin and simultaneously results in heme degradation. Since heme is located in a hydrophobic moiety of hemoglobin, we hypothesized that other hydrophobic substances or amphiphilic xenobiotics can dispose hemoglobin to oxidative stress. Here this hypothesis was tested by investigating heme degradation of hemoglobin during interaction with n-alkyl sulfates. This was accomplished using UV–Vis and fluorescence spectroscopy, chemometric analysis, and chemiluminescence methods. We determined whether a relationship exists between the alkyl tail length (surfactant hydrophobicity) of n-alkyl sulfate homologues, reactive oxygen species (ROS) production, and heme degradation pattern of hemoglobin. We also proposed a mechanism for these types of interactions and induction of heme degradation. Our results indicated that hemoglobin structural–functional changes including globin denaturation are the key factors in starting the heme degradation process, and heme degradation product patterns were dependent on each alkyl sulfate. However, the number of fluorescent components (heme degradation products) was independent of the alkyl sulfate type. The reason for this phenomenon was the mechanism of reaction in which the amount of hydrogen peroxide was changed with each homologue, but the mechanism of degradation remained the same. Thus, an increase in hydrophobic chain length of the surfactants correlated with the enhanced ROS production and heme degradation of hemoglobin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号