首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1980篇
  免费   116篇
  国内免费   10篇
化学   1296篇
晶体学   24篇
力学   52篇
数学   107篇
物理学   314篇
无线电   313篇
  2024年   16篇
  2023年   43篇
  2022年   98篇
  2021年   159篇
  2020年   72篇
  2019年   96篇
  2018年   77篇
  2017年   88篇
  2016年   122篇
  2015年   77篇
  2014年   101篇
  2013年   111篇
  2012年   146篇
  2011年   147篇
  2010年   85篇
  2009年   70篇
  2008年   83篇
  2007年   86篇
  2006年   84篇
  2005年   83篇
  2004年   57篇
  2003年   46篇
  2002年   26篇
  2001年   10篇
  2000年   9篇
  1999年   4篇
  1998年   4篇
  1997年   7篇
  1996年   6篇
  1995年   4篇
  1994年   6篇
  1993年   3篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   6篇
  1985年   5篇
  1984年   7篇
  1983年   4篇
  1982年   4篇
  1981年   14篇
  1980年   6篇
  1979年   3篇
  1978年   2篇
  1973年   4篇
  1965年   1篇
  1935年   1篇
  1934年   1篇
排序方式: 共有2106条查询结果,搜索用时 265 毫秒
61.
62.
Quinazoline is a heterocyclic compound having biological activities. It is aromatic in nature having bicyclic structure containing benzene ring and pyrimidine ring. Quinazoline and its derivatives are found to have wide range of biological activities that is anticancer, analgesic, antimicrobial, antihypertensive, anticonvulsant, antimalarial, antitumor, and anti-tubercular activities. The purpose of this review is to highlight the recent researches made by researchers on various biological activities of quinazoline derivatives on different targets.  相似文献   
63.
Particle signals are detected by two parallel measuring chains which consist of a detector and analog to digital converter. We have used OPT101 as photodiode and ADS7870 for A/D converter and the output signal from two parallel measuring chains is processed by on line correlation filter. This filter works as real time systems. A correlation algorithm has been applied for this work. The signal to noise ratio has been increased by applying correlation filter. The gain of the filter has been improved by introducing digital signal processing.  相似文献   
64.
In this paper, we exhibit the colorizing of brass surfaces by forming femtosecond laser induced microstructures on the sample surfaces. A variety of single colors such as brown, yellow, green, and black are introduced on brass surfaces by engineering periodic microgratings, microholes, and ring-shaped micro-patterns using Single Beam Direct Laser Writing (SBDLW) technique. The color of the micro-structured brass surfaces is certainly dependent on the width, depth, and period of the microstructures. Finally, we explain, in brief, the colorizing mechanism of metals by femtosecond laser induced microstructures.  相似文献   
65.
66.

Wireless body area network (WBAN) has witnessed significant attentions in the healthcare domain using biomedical sensor-based monitoring of heterogeneous nature of vital signs of a patient’s body. The design of frequency band, MAC superframe structure, and slots allocation to the heterogeneous nature of the patient’s packets have become the challenging problems in WBAN due to the diverse QoS requirements. In this context, this paper proposes an Energy Efficient Traffic Prioritization for Medium Access Control (EETP-MAC) protocol, which provides sufficient slots with higher bandwidth and guard bands to avoid channels interference causing longer delay. Specifically, the design of EETP-MAC is broadly divided in to four folds. Firstly, patient data traffic prioritization is presented with broad categorization including Non-Constrained Data (NCD), Delay-Constrained Data (DCD), Reliability-Constrained Data (RCD) and Critical Data (CD). Secondly, a modified superframe structure design is proposed for effectively handling the traffic prioritization. Thirdly, threshold based slot allocation technique is developed to reduce contention by effectively quantifying criticality on patient data. Forth, an energy efficient frame design is presented focusing on beacon interval, superframe duration, and packet size and inactive period. Simulations are performed to comparatively evaluate the performance of the proposed EETP-MAC with the state-of-the-art MAC protocols. The comparative evaluation attests the benefit of EETP-MAC in terms of efficient slot allocation resulting in lower delay and energy consumption.

  相似文献   
67.
Microwave irradiation (MI) process characteristically enables extremely rapid “in‐core” heating of dipoles and ions, in comparison to conventional thermal (conductance) process of heat transfer. During the process of nanoparticles synthesis, MI both modulates functionality behaviors as well as dynamic of reaction in favorable direction. So, MI providing a facile, favorable and alternative approach during nanoparticles synthesis nanoparticles with enhanced catalytic performances. Although, conventionally used reducing and capping reagents of synthetic origin, are usually environmentally hazardous and toxic for living organism. But, in absence of suitable capping agent; stability, shelf life and catalytic activity of metallic nanoparticles adversely affected. However, polymeric templates which emerged as suitable choice of agent for both reducing and capping purposes; bearing additional advantages in terms of catalyst free one step green synthesis process with high degree of biosafety and efficiency. Another aspect of current works was to understand role of process variables in growth mechanism and catalytic performances of microwave processed metallic nanoparticles, as well as comparison of these parameters with conventional heating method. However, due to poor prediction ability with previously published architect OFAT (One factor at a time) design with these nanoparticles as well as random selection of process variables with their different levels, such comparison couldn't be possible. Hence, using gum Ghatti (Anogeissus latifolia) as a model bio‐template and under simulated reaction conditions; architect of QbD design systems were integrated in microwave processed nanoparticles to establish mechanistic role these variables. Furthermore, in comparison to conventional heating; we reported well validated mathematical modeling of process variables on characteristic of nanoparticles as well as synthesized gold nanoparticles of desired and identical dimensions, in both thermal and microwave‐based processes. Interestingly, despite of identical dimension, MI processed gold nanoparticles bearing higher efficiency (kinetic rate) against remediation of hazardous nitro dye (4‐nitrophenol), into safer amino (4‐aminophenol) analogues.  相似文献   
68.
The structure and properties of amides are of tremendous interest in organic synthesis and biochemistry. Traditional amides are planar and the carbonyl group non-electrophilic due to nN→π*C=O conjugation. In this study, we report electrophilicity scale by exploiting 17O NMR and 15N NMR chemical shifts of acyclic twisted and destabilized acyclic amides that have recently received major attention as precursors in N-C(O) cross-coupling by selective oxidative addition as well as precursors in electrophilic activation of N-C(O) bonds. Most crucially, we demonstrate that acyclic twisted amides feature electrophilicity of the carbonyl group that ranges between that of acid anhydrides and acid chlorides. Furthermore, a wide range of electrophilic amides is possible with gradually varying carbonyl electrophilicity by steric and electronic tuning of amide bond properties. Overall, the study quantifies for the first time that steric and electronic destabilization of the amide bond in common acyclic amides renders the amide bond as electrophilic as acid anhydrides and chlorides. These findings should have major implications on the fundamental properties of amide bonds.  相似文献   
69.
Biodegradable multi‐l ‐arginyl‐poly‐l ‐aspartate (MAPA), more commonly cyanophycin, prepared with recombinant Escherichia coli contains a polyaspartate backbone with lysine and arginine as side chains. Two assemblies of polyelectrolyte multilayers (PEMs) are fabricated at three different concentration ratios of insoluble MAPA (iMAPA) with hyaluronic acid (iMAPA/HA) and with γ‐polyglutamic acid (iMAPA/γ‐PGA), respectively, utilizing a layer‐by‐layer approach. Both films with iMAPA and its counterpart, HA or γ‐PGA, as the terminal layer are prepared to assess the effect on film roughness, cell growth, and cell migration. iMAPA incorporation is higher for a higher concentration of the anionic polymer due to better charge interaction. The iMAPA/HA films when compared to iMAPA/γ‐PGA multilayers show least roughness. The growth rates of L929 fibroblast cells on the PEMs are similar to those on glass substrate, with no supplementary effect of the terminal layer. However, the migration rates of L929 cells increase for all PEMs. γ‐PGA incorporated films impart 50% enhancement to the cell migration after 12 h of culture as compared to the untreated glass, and the smooth films containing HA display a maximum 82% improvement. The results present the use of iMAPA to construct a new layer‐by‐layer system of polyelectrolyte biopolymers with a potential application in wound dressing.  相似文献   
70.
A number of oxotitanium(IV) complexes of the type TiOL with bis‐unsymmetric dibasic tetradentate Schiff base (LH2) containing ONNO donor atoms have been synthesized. Mono‐Schiff base (OPD‐HNP) was prepared by the condensation of 1:3 molar ratio of 2‐hydroxy‐1‐naphthaldehyde (HNP) with o‐phenylenediamine (OPD). Dibasic unsymmetric tetradentate diamine Schiff bases were prepared by the reaction of OPD‐HNP with 2‐hydroxyacetophenone, 2‐hydroxypropeophenone, benzoylacetone, acetylacetone and ethylacetoacetate. Further, titanylacetylacetonate was reacted with these ligands to obtain their metal complexes. On the basis of analytical and physiochemical data, the formation of complexes as TiOL was suggested having square pyramidal geometry. Quantum mechanical approach also confirmed this geometry. The assessment of the synthesized ligands and their complexes showed that some behave as good inhibitors of mycelial growth against selected phytopathogic fungi but weak inhibitors against some selected bacteria. A few of them also showed antioxidant properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号