首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2497篇
  免费   139篇
  国内免费   4篇
化学   2115篇
晶体学   5篇
力学   27篇
数学   222篇
物理学   189篇
无线电   82篇
  2024年   3篇
  2023年   28篇
  2022年   117篇
  2021年   137篇
  2020年   62篇
  2019年   71篇
  2018年   58篇
  2017年   44篇
  2016年   122篇
  2015年   85篇
  2014年   114篇
  2013年   146篇
  2012年   160篇
  2011年   221篇
  2010年   119篇
  2009年   118篇
  2008年   182篇
  2007年   160篇
  2006年   139篇
  2005年   126篇
  2004年   94篇
  2003年   82篇
  2002年   60篇
  2001年   20篇
  2000年   10篇
  1999年   16篇
  1998年   15篇
  1997年   12篇
  1996年   15篇
  1995年   16篇
  1994年   6篇
  1993年   4篇
  1992年   3篇
  1991年   6篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1986年   2篇
  1985年   8篇
  1984年   2篇
  1983年   11篇
  1982年   2篇
  1981年   5篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1974年   2篇
  1972年   2篇
  1970年   2篇
  1933年   2篇
排序方式: 共有2640条查询结果,搜索用时 15 毫秒
51.
BRAF is a serine/threonine kinase frequently mutated in human cancers. BRAFV600E mutated protein is targeted through the use of kinase inhibitors which are approved for the treatment of melanoma; however, their long-term efficacy is hampered by resistance mechanisms. The PROTAC-induced degradation of BRAFV600E has been proposed as an alternative strategy to avoid the onset of resistance. In this study, we designed a series of compounds where the BRAF kinase inhibitor encorafenib was conjugated to pomalidomide through different linkers. The synthesized compounds maintained their ability to inhibit the kinase activity of mutated BRAF with IC50 values in the 40–88 nM range. Selected compounds inhibited BRAFV600E signaling and cellular proliferation of A375 and Colo205 tumor cell lines. Compounds 10 and 11, the most active of the series, were not able to induce degradation of mutated BRAF. Docking and molecular dynamic studies, conducted in comparison with the efficient BRAF degrader P5B, suggest that a different orientation of the linker bearing the pomalidomide substructure, together with a decreased mobility of the solvent-exposed part of the conjugates, could explain this behavior.  相似文献   
52.
The genus Cetraria s. str. (Parmeliaceae family, Cetrarioid clade) consists of 15 species of mostly erect brown or greenish yellow fruticose or subfoliose thallus. These Cetraria species have a cosmopolitan distribution, being primarily located in the Northern Hemisphere, in North America and in the Eurasia area. Phytochemical analysis has demonstrated the presence of dibenzofuran derivatives (usnic acid), depsidones (fumarprotocetraric and protocetraric acids) and fatty acids (lichesterinic and protolichesterinic acids). The species of Cetraria, and more particularly Cetraria islandica, has been widely employed in folk medicine for the treatment of digestive and respiratory diseases as decoctions, tinctures, aqueous extract, and infusions. Moreover, Cetraria islandica has had an important nutritional and cosmetic value. These traditional uses have been validated in in vitro and in vivo pharmacological studies. Additionally, new therapeutic activities are being investigated, such as antioxidant, immunomodulatory, cytotoxic, genotoxic and antigenotoxic. Among all Cetraria species, the most investigated by far has been Cetraria islandica, followed by Cetraria pinastri and Cetraria aculeata. The aim of the current review is to update all the knowledge about the genus Cetraria covering aspects that include taxonomy and phylogeny, morphology and distribution, ecological and environmental interest, phytochemistry, traditional uses and pharmacological properties.  相似文献   
53.
Agropyron repens (L.) P. Beauv. (couch grass) is a world-wide infesting rhizomatous plant with pharmacological applications. Chemical research is focused on its allelopathic and anti-inflammatory components, which are mainly present in the essential oil. Conversely, the aqueous extracts have been sparingly investigated, although the herbal tea is by far the most used formulation. To fill the gap, the metabolic profile of Agropyron repens rhizome herbal tea was investigated by electrospray ionization (ESI) tandem–mass spectrometry (MS/MS); the phenolic profile was investigated by HPLC-PDA-ESI-MS/MS. ESI-MS fingerprinting was provided, evidencing diagnostic ions for saccharides, organic acids and amino acids. The HPLC-PDA-ESI-MS/MS analysis evidenced at least 20 characteristic phenolic compounds, the most representative being caffeoyl and feruloyl quinic esters, followed by coumaric, caffeic and ferulic acids, and hesperidin among flavonoids. In addition, the essential amino acid tryptophan was identified for the first time. The results suggest new perspectives of applications for Agropyron repens rhizome.  相似文献   
54.
In the times of dynamically developing regenerative medicine, more and more attention is focused on the use of natural polymers. This is due to their high biocompatibility and biodegradability without the production of toxic compounds, which means that they do not hurt humans and the natural environment. Chitosan and its derivatives are polymers made most often from the shells of crustaceans and are biodegradable and biocompatible. Some of them have antibacterial or metal-chelating properties. This review article presents the development of biomaterials based on chitosan and its derivatives used in regenerative medicine, such as a dressing or graft of soft tissues or bones. Various examples of preparations based on chitosan and its derivatives in the form of gels, films, and 3D structures and crosslinking products with another polymer are discussed herein. This article summarizes the latest advances in medicine with the use of biomaterials based on chitosan and its derivatives and provides perspectives on future research activities.  相似文献   
55.
The COVID-19 pandemic has revealed the vulnerability of the modern, global society. With expected waves of future infections by SARS-CoV-2, treatment options for infected individuals will be crucial in order to decrease mortality and hospitalizations. The SARS-CoV-2 main protease is a validated drug target, for which the first inhibitor has been approved for use in patients. To facilitate future work on this drug target, we designed a solid-phase synthesis route towards azapeptide activity-based probes that are capped with a cysteine-reactive electrophile for covalent modification of the active site of Mpro. This design led to the most potent ABP for Mpro and one of the most potent inhibitors reported thus far. We demonstrate that this ABP can be used to visualize Mpro activity and target engagement by drugs in infected cells.

The COVID-19 pandemic has revealed the vulnerability of the modern, global society.  相似文献   
56.
The challenge of improving the activity of TiO2 by modifying it with metals and using it for targeted applications in microreactor environments is an active area of research. Recently, microreactors have emerged as successful candidates for many photocatalytic reactions, especially for the selective oxidation process. The current work introduces ultrasound-assisted catalyst deposition on the inner walls of a perfluoro-alkoxy alkane (PFA) microtube under mild conditions. We report Cu-Au/TiO2 and Fe-Au/TiO2 nanoparticles synthesized using the sol–gel method. The obtained photocatalysts were thoroughly characterized by UV–Vis diffuse-reflectance spectroscopy (DRS), high-resolution scanning electron microscopy (HR-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and N2 physisorption. The photocatalytic activity under UV (375 nm) and visible light (515 nm) was estimated by the oxidation of lignin-based model aromatic alcohols in batch and fluoropolymer-based flow systems. The bimetallic catalyst exhibited improved photocatalytic selective oxidation. Herein, four aromatic alcohols were individually investigated and compared. In our experiments, the alcohols containing hydroxy and methoxy groups (coniferyl and vanillin alcohol) showed high conversion (93% and 52%, respectively) with 8% and 17% selectivity towards their respective aldehydes, with the formation of other side products. The results offer an insight into ligand-to-metal charge transfer (LMCT) complex formation, which was found to be the main reason for the activity of synthesized catalysts under visible light.  相似文献   
57.
In the present study, the influence of spatial confinement on the bond length as well as dipole moment, polarizability and (hyper)polarizabilities of HeH+ ion was analyzed. The effect of spatial confinement was modelled by cylindrically symmetric harmonic oscillator potential, that can be used to mimic high pressure conditions. Based on the conducted research it was found that the spatial confinement significantly affects the investigated properties. Increasing the confinement strength leads to a substantial decrease of their values. This work may be of particular interest for astrochemistry as HeH+ is believed to be the first compound to form in the Universe.  相似文献   
58.
Human dihydroorotate dehydrogenase (hDHODH) is an enzyme belonging to a flavin mononucleotide (FMN)-dependent family involved in de novo pyrimidine biosynthesis, a key biological pathway for highly proliferating cancer cells and pathogens. In fact, hDHODH proved to be a promising therapeutic target for the treatment of acute myelogenous leukemia, multiple myeloma, and viral and bacterial infections; therefore, the identification of novel hDHODH ligands represents a hot topic in medicinal chemistry. In this work, we reported a virtual screening study for the identification of new promising hDHODH inhibitors. A pharmacophore-based approach combined with a consensus docking analysis and molecular dynamics simulations was applied to screen a large database of commercial compounds. The whole virtual screening protocol allowed for the identification of a novel compound that is endowed with promising inhibitory activity against hDHODH and is structurally different from known ligands. These results validated the reliability of the in silico workflow and provided a valuable starting point for hit-to-lead and future lead optimization studies aimed at the development of new potent hDHODH inhibitors.  相似文献   
59.
The century-old, well-known odd–even effect phenomenon is still a very attractive and intriguing topic in supramolecular and nano-scale organic chemistry. As a part of our continuous efforts in the study of supramolecular chemistry, we have prepared three novel aromatic alcohols (1,2-bis[2-(hydroxymethyl)phenoxy]butylene (Do4OH), 1,2-bis[2-(hydroxymethyl)phenoxy]pentylene (Do5OH) and 1,2-bis[2-(hydroxymethyl)phenoxy]hexylene (Do6OH)) and determined their crystal and molecular structures by single-crystal X-ray diffraction. In all compounds, two benzyl alcohol groups are linked by an aliphatic chain of different lengths (CH2)n; n = 4, 5 and 6. The major differences in the molecular structures were found in the overall planarity of the molecules and the conformation of the aliphatic chain. Molecules with an even number of CH2 groups tend to be planar with an all-trans conformation of the aliphatic chain, while the odd-numbered molecule is non-planar, with partial gauche conformation. A direct consequence of these structural differences is visible in the melting points—odd-numbered compounds of a particular series display systematically lower melting points. Crystal and molecular structures were additionally studied by the theoretical calculations and the melting points were correlated with packing density and the number of CH2 groups. The results have shown that the generally accepted rule, higher density = higher stability = higher melting point, could not be applied to these compounds. It was found that the denser packaging causes an increase in the percentage of repulsive H‧‧‧H interactions, thereby reducing the stability of the crystal, and consequently, the melting points. Another interesting consequence of different molecular structures is their electrochemical and antioxidative properties—a non-planar structure displays the highest oxidation peak of hydroxyl groups and moderate antioxidant activity.  相似文献   
60.
Influenza viruses are transmitted from human to human via airborne droplets and can be transferred through contaminated environmental surfaces. Some works have demonstrated the efficacy of essential oils (EOs) as antimicrobial and antiviral agents, but most of them examined the liquid phases, which are generally toxic for oral applications. In our study, we describe the antiviral activity of Citrus bergamia, Melaleuca alternifolia, Illicium verum and Eucalyptus globulus vapor EOs against influenza virus type A. In the vapor phase, C. bergamia and M. alternifolia strongly reduced viral cytopathic effect without exerting any cytotoxicity. The E. globulus vapor EO reduced viral infection by 78% with no cytotoxicity, while I. verum was not effective. Furthermore, we characterized the EOs and their vapor phase by the head-space gas chromatography–mass spectrometry technique, observing that the major component found in each liquid EO is the same one of the corresponding vapor phases, with the exception of M. alternifolia. To deepen the mechanism of action, the morphological integrity of virus particles was checked by negative staining transmission electron microscopy, showing that they interfere with the lipid bilayer of the viral envelope, leading to the decomposition of membranes. We speculated that the most abundant components of the vapor EOs might directly interfere with influenza virus envelope structures or mask viral structures important for early steps of viral infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号