首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   3篇
  国内免费   1篇
化学   37篇
力学   9篇
数学   10篇
物理学   20篇
无线电   34篇
  2022年   4篇
  2021年   6篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   6篇
  2016年   5篇
  2015年   5篇
  2014年   7篇
  2013年   9篇
  2012年   8篇
  2011年   9篇
  2010年   4篇
  2009年   5篇
  2008年   7篇
  2007年   9篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有110条查询结果,搜索用时 0 毫秒
11.
A critical problem in building long systolic arrays lies in efficient and reliable synchronization. We address this problem in the context of synchronous systems by introducing probabilistic models for two alternative clock distribution schemes: tree and straight-line clocking. We present analytic bounds for the Probability of Failure and the Mean Time to Failure, and examine the trade-offs between reliability and throughput in both schemes. Our basic conclusion is that as the one-dimensional systolic array gets very long, tree clocking becomes more reliable than straight-line clocking.  相似文献   
12.
The various end‐to‐end distances of four‐junction polymers are investigated. The sizes of the different kinds of equal length branches and the backbone of two different polymers, with either nine or eleven branches, are estimated by means of both renormalization‐group and MC calculations. The comparisons of first‐order ε = 4 − d predictions with the MC results are satisfactory. The same trends are present in both techniques. The excluded‐volume interactions from additional branches further expand the various parts of the chains so that internal branches are larger than external ones. The branch ratios in the eleven‐branch case are expanded even more than the corresponding ratios of the nine‐branch polymer.

  相似文献   

13.
The aim of this study was to propose a new conceptualization of early number sense. Six-year-old students’ (n = 204) number sense was tracked from the beginning of Grade 1 through the beginning of Grade 2. Data analysis suggested that elementary arithmetic, conventional arithmetic, and algebraic arithmetic contributed to the latent construct early number sense, and the invariance of the model over time was validated empirically. Algebraic arithmetic represents the dimension of early number sense that moves beyond conventional arithmetic and encompasses an abstract understanding of the relations between numbers. A parallel process growth model showed that the three components of number sense adopt a linear growth rate. A structural model showed that the growth rate of the algebraic arithmetic component has a direct effect on the growth rate of conventional arithmetic, and subsequently the growth rate of conventional arithmetic predicts the growth rate of elementary arithmetic.  相似文献   
14.
By identifying the key characteristic "structural scales" that dictate the resistance of a porous metallic glass against buckling and fracture, stochastic highly porous metallic-glass structures are designed capable of yielding plastically and inheriting the high plastic yield strength of the amorphous metal. The strengths attainable by the present foams appear to equal or exceed those by highly engineered metal foams such as Ti-6Al-4V or ferrous-metal foams at comparable levels of porosity, placing the present metallic-glass foams among the strongest foams known to date.  相似文献   
15.
In this paper we consider the convection-diffusion problem of a passive scalar in Lagrangian coordinates, i.e., in a coordinate system fixed on fluid particles. Both the convection-diffusion partial differential equation and the Langevin equation are expressed in Lagrangian coordinates and are shown to be equivalent for uniform, isotropic diffusion. The Lagrangian diffusivity is proportional to the square of the relative change of surface area and is related to the Eulerian diffusivity through the deformation gradient tensor. Associated with the initial value problem, we relate the Eulerian to the Lagrangian effective diffusivities (net spreading), validate the relation for the case of linear flow fields, and infer a relation for general flow fields. Associated with the boundary value problem, if the scalar transport problem possesses a time-independent solution in Lagrangian coordinates and the boundary conditions are prescribed on a material surface/interface, then the net mass transport is proportional to the diffusion coefficient. This can be also shown to be true for large Peclet number and time-periodic flow fields, i.e., closed pathlines. This agrees with results for heat transfer at high Peclet numbers across closed streamlines.  相似文献   
16.
The pendant drop technique was used to characterize the adsorption behavior of n-dodecane-1-thiol and n-hexane-1-thiol-capped gold nanoparticles at the hexane–water interface. The adsorption process was studied by analyzing the dynamic interfacial tension versus nanoparticle concentration, both at early times and at later stages (i.e., immediately after the interface between the fluids is made and once equilibrium has been established). A series of gold colloids were made using nanoparticles ranging in size from 1.60 to 2.85 nm dissolved in hexane for the interfacial tension analysis. Following free diffusion of nanoparticles from the bulk hexane phase, adsorption leads to ordering and rearrangement of the nanoparticles at the interface and formation of a dense monolayer. With increasing interfacial coverage, the diffusion-controlled adsorption for the nanoparticles at the interface was found to change to an interaction-controlled assembly and the presence of an adsorption barrier was experimentally verified. At the same bulk concentration, different sizes of n-dodecane-1-thiol nanoparticles showed different absorption behavior at the interface, in agreement with the findings of Kutuzov et al. (Phys Chem Chem Phys 9:6351–6358, 2007). The experiments additionally demonstrated the important role played by the capping agent. At the same concentration, gold nanoparticles stabilized by n-hexane-1-thiol exhibited greater surface activity than gold nanoparticles of the same size stabilized by n-dodecane-1-thiol. These findings contribute to the design of useful supra-colloidal structures by the self-assembly of alkane-thiol-capped gold nanoparticles at liquid–liquid interfaces.  相似文献   
17.
18.
The efficient representation and manipulation of a large number of paths in a Directed Acyclic Graph (DAG) requires the usage of special data structures that may become of exponential size with respect to the size of the graph. Several methodologies targeting Electronic Design Automation problems such as timing analysis, physical design, verification and testing involve path representation and necessary manipulation. Previous works proposed an encoding using Zero-suppressed Binary Decision Diagrams (ZDDs), which has been shown experimentally to cope well when representing structural or logical paths in VLSI circuits. However, it is well known that the ordering of the variables in a ZDD highly affects its size and, therefore, the efficiency of the methodologies utilizing these data structures. In this work, we show that using a reverse topological order for the ZDD variables bounds the number of nodes in the ZDD representing structural paths to the number of edges in the DAG considered, hence, making the ZDD size linear to the DAG’s size. This result, supported here both theoretically and experimentally, is very important as it can render methodologies with questionable scalability applicable to larger industrial designs. We demonstrate the applicability of the proposed variable ordering in one such methodology which utilizes ZDDs to grade the Path Delay Fault coverage of a given test set.  相似文献   
19.
In this work we perform a theoretical analysis of the thermoelectric performance of polycrystalline Si nanowires (NWs) by considering both electron and phonon transport. The simulations are calibrated with experimental data from monocrystalline and polycrystalline structures. We show that heavily doped polycrystalline NW structures with grain size below 100 nm might offer an alternative approach to achieve simultaneous thermal conductivity reduction and power factor improvements through improvements in the Seebeck coefficient. We find that deviations from the homogeneity of the channel and/or reduction in the diameter may provide strong reduction in the thermal conductivity. Interestingly, our calculations show that the Seebeck coefficient and consequently the power factor can be improved significantly once the polycrystalline geometry is properly optimized, while avoiding strong reduction in the electrical conductivity. In such a way, ZT values even higher than the ones reported for monocrystalline Si NWs can be achieved.  相似文献   
20.
The bounds presented at CHES 2017 based on Massey’s guessing entropy represent the most scalable side-channel security evaluation method to date. In this paper, we present an improvement of this method, by determining the asymptotically optimal Massey-like inequality and then further refining it for finite support distributions. The impact of these results is highlighted for side-channel attack evaluations, demonstrating the improvements over the CHES 2017 bounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号