首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4024篇
  免费   151篇
  国内免费   14篇
化学   2435篇
晶体学   20篇
力学   122篇
数学   694篇
物理学   580篇
无线电   338篇
  2023年   24篇
  2022年   65篇
  2021年   105篇
  2020年   53篇
  2019年   82篇
  2018年   56篇
  2017年   74篇
  2016年   131篇
  2015年   126篇
  2014年   114篇
  2013年   237篇
  2012年   226篇
  2011年   247篇
  2010年   142篇
  2009年   133篇
  2008年   231篇
  2007年   205篇
  2006年   227篇
  2005年   196篇
  2004年   151篇
  2003年   150篇
  2002年   111篇
  2001年   68篇
  2000年   52篇
  1999年   60篇
  1998年   34篇
  1997年   42篇
  1996年   50篇
  1995年   46篇
  1994年   40篇
  1993年   47篇
  1992年   31篇
  1991年   20篇
  1990年   23篇
  1989年   24篇
  1988年   20篇
  1987年   26篇
  1986年   20篇
  1985年   45篇
  1984年   39篇
  1983年   45篇
  1982年   32篇
  1981年   29篇
  1980年   34篇
  1979年   26篇
  1977年   25篇
  1976年   22篇
  1975年   20篇
  1974年   15篇
  1973年   16篇
排序方式: 共有4189条查询结果,搜索用时 828 毫秒
81.
Two challenges for effectively exploiting the remarkable properties of single-walled carbon nanotubes (SWNTs) are the isolation of intact individual nanotubes from the raw material and the assembly of these isolated SWNTs into useful structures. In this study, we present atomic force microscopy (AFM) evidence that we can isolate individual peptide-wrapped SWNTs, possibly connected end-to-end into long fibrillar structures, using an amphiphilic alpha-helical peptide, termed nano-1. Transmission electron microscopy (TEM) and well-resolved absorption spectral features further corroborate nano-1's ability to debundle SWNTs in aqueous solution. Peptide-assisted assembly of SWNT structures, specifically in the form of Y-, X-, and intraloop junctions, was observed in the AFM and TEM images.  相似文献   
82.
The polar 1, 4-cycloaddition of phenylsulfene (generated in situ from phenylmethanesulfony] chloride and triethylamine) to N, N-disubstituted (E)-2-aminomethylenecyclohexanones I gave in general a mixture of N, N-disubstituted cis- and trans-4-amino-3, 4, 5, 6, 7, 8-hexahydro-3-phenyl-1, 2-benzoxathiin 2, 2-dioxides III and IV, which were separated by column chromatography and whose structural and conformational features were determined from uv, ir and nmr spectral data. In the case of N, N-diisopropylamino enaminone 1c, the cyclo-addition took place with elimination of an alkyl group as propene to give the adduct III?.  相似文献   
83.
Treatment of a solution of excess PCl(3) and PS (PS = "proton sponge" = 1,8-dimethylamino naphthalene) with arachno-4-CB(8)H(14) (1) in CH(2)Cl(2), followed by hydrolysis of the reaction mixture, resulted in the isolation of the eleven-vertex diphosphacarbaborane nido-7,8,9-P(2)CB(8)H(10) (2) (yield 34%) as the main product. Other products isolated from this reaction were the phosphacarboranes nido-7,8,9,10-P(3)CB(7)H(8) (3) (yield 5%) and closo-2,1-PCB(8)H(9) (4) (yield 15%). Compound 2 can be deprotonated by PS in CH(2)Cl(2) or NaH in diethyl ether to give the [nido-7,8,9-P(2)CB(8)H(9)](-) (2(-)()) anion, which gives back the original compound, 2, upon re-protonation. Thermal rearrangement of anion 2(-) (Na(+) salt) at 350 degrees C for 2 h produced the isomeric [nido-7,8,10-P(2)CB(8)H(9)](-) (5(-)()) anion, which was isolated as a PPh(4)(+) salt (yield 86%). Multinuclear ((1)H, (11)B, (31)P, and (13)C), two-dimensional [(11)B-(11)B] COSY, (1)H{(11)B(selective)}, (1)H{(31)P(selective)}, and gradient-enhanced ([(1)H-(13)C] HSQC) magnetic resonance measurements led to complete assignments of all resonances which are in excellent agreement with the structures proposed. Coupling constants, (1)J((31)P,(13)C), (2)J((31)P,C,(1)H), and (1)J((31)P,(31)P), were calculated using the DFT method B3LYP/6-311+G(d,p). The molecular geometries of all compounds were optimized ab initio at a correlated level of theory (RMP2(fc)) using the 6-31G basis set, and their correctness was assessed by comparison of the experimental (11)B and (13)C chemical shifts with those calculated by the GIAO-SCF/II//RMP2(fc)/6-31G method. The computations also include the structures and chemical shieldings of the still unknown isomers [nido-7,10,8-P(2)CB(8)H(9)](-) (6(-)) and [nido-7,9,8-P(2)CB(8)H(9)](-) (7(-)).  相似文献   
84.
In the present paper we report the results of a multiconfigurational computational study on potential-energy curves of azobenzene along the NN twisting to clarify the role of this coordinate in the decay of the S2(*) and S1(n*) states. We have found that there is a singlet state, S3 at the trans geometry, on the basis of the doubly excited configuration n2*2, that has a deep minimum at about 90° of twisting, where it is the lowest excited singlet state. The existence of this state provides an explanation for the short lifetime of S2(*) and for the wavelength-dependence of azobenzene photochemistry. We have characterized the S1(n*) state by calculating its vibrational frequencies, which are found to correspond to the recently observed transient Raman spectrum. We have also computed the potential-energy curve for the triplet T1(n*) at the density functional theory B3LYP level, which indicates that in this state the isomerization occurs along the twisting coordinate.Acknowledgement The financial support from MIUR (project Modellistica delle proprietà spettroscopiche di sistemi molecolari complessi funds ex 60% and project Dinamiche molecolari in sistemi di interesse chimico funds ex 40%), from the University of Bologna (Funds for Selected Research Topics) is gratefully acknowledged.Contribution to the Jacopo Tomasi Honorary Issue  相似文献   
85.
The 2,2'-azobis(isobutyronitrile)(AIBN)-induced autoxidation of gamma-terpinene (TH) at 50 degrees C produces p-cymene and hydrogen peroxide in a radical-chain reaction having HOO* as one of the chain-carrying radicals. The kinetics of this reaction in cyclohexane and tert-butyl alcohol show that chain termination involves the formal HOO. + HOO. self-reaction over a wide range of gamma-terpinene, AIBN, and O2 concentrations. However, in acetonitrile this termination process is accompanied by termination via the cross-reaction of the terpinenyl radical, T., with the HOO. radical under conditions of relatively high [TH] (140-1000 mM) and low [O2] (2.0-5.5 mM). This is because the formal HOO. + HOO. reaction is comparatively slow in acetonitrile (2k approximately 8 x 10(7) M(-1) s(-1)), whereas, this reaction is almost diffusion-controlled in tert-butyl alcohol and cyclohexane, 2k approximately 6.5 x 10(8) and 1.3 x 10(9) M(-1) s(-1), respectively. Three mechanisms for the bimolecular self-reaction of HOO. radicals are considered: 1) a head-to-tail hydrogen-atom transfer from one radical to the other, 2) a head-to-head reaction to form an intermediate tetroxide, and 3) an electron-transfer between HOO. and its conjugate base, the superoxide radical anion, O2-.. The rate constant for reaction by mechanism (1) is shown to be dependent on the hydrogen bond (HB) accepting ability of the solvent; that by mechanism (2) is shown to be too slow for this process to be of any importance; and that by mechanism (3) is dependent on the pH of the solvent and its ability to support ionization. Mechanism (3) was found to be the main termination process in tert-butyl alcohol and acetonitrile. In the gas phase, the rate constant for the HOO. + HOO. reaction (mechanism (1)) is about 1.8 x 10(9) M(-1) s(-1) but in water at pH< or =2 where the ionization of HOO. is completely suppressed, this rate constant is only 8.6 x 10(5) M(-1) s(-1). The very large retarding effect of water on this reaction has not previously been explained. We find that it can be quantitatively accounted for by using Abraham's HB acceptor parameter, beta(2)(H), for water of 0.38 and an estimated HB donor parameter, alpha(2)(H), for HOO. of about 0.87. These Abraham parameters allow us to predict a rate constant for the HOO. + HOO. reaction in water at 25 degrees C of 1.2 x 10(6) M(-1) s(-1) in excellent agreement with experiment.  相似文献   
86.
The paper reports a study on the intercalation mechanism of NH2(CH2) n NH2 (withn=2, 4, 6, 8, 10) diamines in layered Zr(HOPO3)2·H2O, performed by titrating the host with aqueous solutions of amines at 80°C. The intercalation reactions occur stepwise according to the ‘moving boundary’ model, with the formation of a number of intermediate intercalation compounds of formula Zr(HOPO3)2·xNH2(CH2) n NH2 (0<x<1) before obtaining the fully intercalated ones (x=1). For each diamine the batch titration curve and a diagram of the phases involved in the interaclation reaction are reported. Twenty-two intercalation compounds have been isolated and characterized by their composition, XRD patterns and thermal behaviour, and information on the disposition of the guests within the interlayer region have been derived. At full intercalation the diamines form a monolayer of extended molecules with their axis inclined at 58° to the plane of the sheet. The terminal amino groups are protonated by the —POH groups of the host, thus each diamine binds adjacent layers and, in a sense, transforms a layered structure into a framework structure that may have an accessible or potentially accessible porosity. The intercalation compound Zr(HOPO3)2·0.5NH2(CH2)8NH2 is indeed able to include polar molecules such as water and short chain alkanols.  相似文献   
87.
The (13)C pulsed ENDOR and NMR study of [meso-(13)C-TPPFe(OCH(3))(OO(t)Bu)](-) performed in this work shows that although the unpaired electron in low-spin ferrihemes containing a ROO(-) ligand resides in a d(pi) orbital at 8 K, the d(xy) electron configuration is favored at physiological temperatures. The variable temperature NMR spectra indicate a dynamic situation in which a heme with a d(pi) electron configuration and planar porphyrinate ring is in equilibrium with a d(xy) electron configuration that has a ruffled porphyrin ring. Because of the similarity in the EPR spectra of the hydroperoxide complexes of heme oxygenase, cytochrome P450, and the model heme complex reported herein, it is possible that these two electron configurations and ring conformations may also exist in equilibrium in the enzymatic systems. The ruffled porphyrinate ring would aid the attack of the terminal oxygen of the hydroperoxide intermediate of heme oxygenase (HO) on the meso-carbon, and the large spin density at the meso-carbons of a d(xy) electron configuration heme suggests the possibility of a radical mechanism for HO. The dynamic equilibrium between the ruffled (d(xy)) and planar (d(pi)) conformers observed in the model complexes also suggests that a flexible heme binding cavity may be an important structural motif for heme oxygenase activity.  相似文献   
88.
The electronic absorption spectra of Ni, Zn and Mg hemiporphyrazine derivatives are presented and discussed together with theoretical results obtained by INDO/S computations. The absorption spectra of all the metal derivatives show marked red shifts of the lowest energy absorption bands with respect to those of the metal free hemiporphyrazine. The possible explanation that in metal derivatives low lying excited states with a fully conjugated π electron system are present is supported by theoretical computations.  相似文献   
89.
Cycloaddition of sulfene to N,N-disubstituted 4-amino-3-methyl-3-buten-2-ones (III) occurred in fair to good yield only in the case of aliphatic N-substitution to give 4-dialkylamino-3,4-dihydro-5,6-dimethyl-1,2-oxathiin 2,2-dioxides, whereas N,N-disubstituted 1-amino-1-penten-3-ones (II) did not react at all. Cycloaddition of dichloroketene to II, III and N,N-disubstituted 4-amino-3-buten-2-ones occurred only in the case of the methylphenylamino derivative, giving in good to moderate yield 6,(5)(di)alkyl-3,3-dichloro-3,4-dihydro-4-methylphenylamino-2-Hpyran-2-ones, which were dehydrochlorinated with DBN to 6,(5)(di)alkyl-3-chloro-4-methylphenylamino-2H-pyran-2-ones.  相似文献   
90.
Summary The x-ray crystal structure of the title complex is described Crystals are monoclinic, space groupP21/n, with unit-cell dimensions:a=18.070(2),b=13.471(2),c=6.788(2) Å,=94.70(1),Z=4. The structure was solved from diffractometer data by Patterson and Fourier methods and refined by least-squares techniques toR=5.0% for 2451 independent reflections. It consists of complex molecules, in which the copper atom square planar coordination comprises the chlorine atom, Cu-Cl=2.240(3) Å, and the organic ligand which acts as terdentate through the oxygen atom [Cu-O=1.948(3) Å] and a nitrogen atom, [Cu-N=1.933(5) Å] from the hydrazidic chain and the oxygen atom, [Cu-O = 1.894(4) Å] from the pyridoxal group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号