首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   2篇
化学   96篇
力学   1篇
数学   18篇
物理学   7篇
无线电   3篇
  2023年   5篇
  2022年   11篇
  2021年   6篇
  2020年   8篇
  2019年   10篇
  2018年   8篇
  2017年   5篇
  2016年   4篇
  2015年   4篇
  2014年   1篇
  2013年   6篇
  2012年   6篇
  2011年   5篇
  2010年   7篇
  2009年   5篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1999年   3篇
  1995年   1篇
  1993年   1篇
  1988年   1篇
  1975年   1篇
  1967年   1篇
  1959年   1篇
排序方式: 共有125条查询结果,搜索用时 15 毫秒
91.
92.
Oxidation of cycloolefins (cyclohexene, cyclooctene, and cyclododecene) with a 30% solution of hydrogen peroxide at 65 °C in the presence of heteropoly acids (HPA) H3PW12–x Mo x O40 (x = 0—12), which are precursors of active peroxo complexes, and phase transfer catalysts Q+Cl, where Q+ is the quaternary ammonium cation containing C4—C18 alkyl groups or [C5H5NC16H33]+, was studied. The catalytic activity decreases in the HPA series: H3PW12O40 > H3PW9Mo3O40 > H3PW6Mo6O40 > H3PW3Mo9O40 > H3PMo12O40. The state of the H3PW12O40—I2I2 system was studied using UV, IR, and 31P NMR spectroscopies with variation of the [H2O2] : [HPA] ratio from 2 to 200 during cyclohexene epoxidation. Despite different catalytic precursors, the reaction proceeds through the same peroxo complex.  相似文献   
93.
Ultra‐low fouling and functionalizable coatings represent emerging surface platforms for various analytical and biomedical applications such as those involving examination of cellular interactions in their native environments. Ultra‐low fouling surface platforms as advanced interfaces enabling modulation of behavior of living cells via tuning surface physicochemical properties are presented and studied. The state‐of‐art ultra‐low fouling surface‐grafted polymer brushes of zwitterionic poly(carboxybetaine acrylamide), nonionic poly(N‐(2‐hydroxypropyl)methacrylamide), and random copolymers of carboxybetaine methacrylamide (CBMAA) and HPMAA [p(CBMAA‐co‐HPMAA)] with tunable molar contents of CBMAA and HPMAA are employed. Using a model Huh7 cell line, a systematic study of surface wettability, swelling, and charge effects on the cell growth, shape, and cytoskeleton distribution is performed. This study reveals that ultra‐low fouling interfaces with a high content of zwitterionic moieties (>65 mol%) modulate cell behavior in a distinctly different way compared to coatings with a high content of nonionic HPMAA. These differences are attributed mostly to the surface hydration capabilities. The results demonstrate a high potential of carboxybetaine‐rich ultra‐low fouling surfaces with high hydration capabilities and minimum background signal interferences to create next‐generation bioresponsive interfaces for advanced studies of living objects.  相似文献   
94.
The cone-shaped calixarene N-chalconeamides were synthesized by the reaction of calix[4]arene carboxylic acids or acid chlorides with aminochalcones. It was found, that calixarene chalconeamides influence the Mg2+, ATP-dependent Ca2+ accumulation in mitochondria and sarcoplasmatic reticulum of the smooth muscle cells.  相似文献   
95.

Flavonoids are of interest for pharmacy and medicinal chemistry due to a wide range of biological activities. The major goal for the design of new drugs based on flavonoids is to increase bioavailability of pharmaceutical substances. Crystal engineering is a useful tool for this purpose. This review presents a systematic analysis of the publications on crystal engineering of flavonoids published between 2000 and 2019. The data on objects, methods of supramolecular synthesis, analysis, and preclinical studies of its products are summarized. The trends in crystal engineering of flavonoids are considered and promising areas for further research are identified. The review may be of interest for researchers engaged in the design of drugs with low bioavailability, including bioflavonoids.

  相似文献   
96.
This review aims to analyze propolis as a potential raw material for the development and manufacture of new health-promoting products. Many scientific publications were retrieved from the Scopus, PubMed, and Google Scholar databases via searching the word "propolis". The different extraction procedures, key biologically active compounds, biological properties, and therapeutic potential of propolis were analyzed. It was concluded that propolis possesses a variety of biological properties because of a very complex chemical composition that mainly depends on the plant species visited by bees and species of bees. Numerous studies found versatile pharmacological activities of propolis: antimicrobial, antifungal, antiviral, antioxidant, anticancer, anti-inflammatory, immunomodulatory, etc. In this review, the composition and biological activities of propolis are presented from a point of view of the origin and standardization of propolis for the purpose of the development of new pharmaceutical products on its base. It was revealed that some types of propolis, especially European propolis, contain flavonoids and phenolic acids, which could be markers for the standardization and quality evaluation of propolis and its preparations. One more focus of this paper was the overview of microorganisms’ sensitivity to propolis for further development of antimicrobial and antioxidant products for the treatment of various infectious diseases with an emphasis on the illnesses of the oral cavity. It was established that the antimicrobial activity of different types of propolis is quite significant, especially to Gram-negative bacteria and lipophilic viruses. The present study could be also of interest to the pharmaceutical industry as a review for the appropriate design of standardized propolis preparations such as mouthwashes, toothpastes, oral drops, sprays, creams, ointments, suppositories, tablets, and capsules, etc. Moreover, propolis could be regarded as a source for the isolation of biologically active substances. Furthermore, this review can facilitate partially overcoming the problem of the standardization of propolis preparations, which is a principal obstacle to the broader use of propolis in the pharmaceutical industry. Finally, this study could be of interest in the area of the food industry for the development of nutritionally well-balanced products. The results of this review indicate that propolis deserves to be better studied for its promising therapeutic effects from the point of view of the connection of its chemical composition with the locality of its collection, vegetation, appropriate extraction methods, and standardization.  相似文献   
97.
Chronic exposure to arsenic (As) compounds leads to its accumulation in the body, with skin lesions and cancer being the most typical outcomes. Treating As-induced diseases continues to be challenging as there is no specific, safe, and efficacious therapeutic management. Therapeutic and preventive measures available to combat As toxicity refer to chelation therapy, antioxidant therapy, and the intake of natural dietary compounds. Although chelation therapy is the most commonly used method for detoxifying As, it has several side effects resulting in various toxicities such as hepatotoxicity, neurotoxicity, and other adverse consequences. Drugs of plant origin and natural dietary compounds show efficient and progressive relief from As-mediated toxicity without any particular side effects. These natural compounds have also been found to aid the elimination of As from the body and, therefore, can be more effective than conventional therapeutic agents in ameliorating As toxicity. This review provides an overview of the recently updated knowledge on treating As poisoning through natural dietary compounds. This updated information may serve as a basis for defining novel prophylactic and therapeutic formulations.  相似文献   
98.
Organogels are an important class of gels, and are comparable to hydrogels owing to their properties as liquid-infused soft materials. Despite the extensive choice of liquid media and compatible networks that can provide a broader range of properties, relatively few studies are reported in this area. This review presents the applicability of organogels concerning their choice of components, unique properties, and applications. Their distinctive features compared to other gels are discussed, including multi-stimuli responses, affinity to a broad range of substances, thermal and environmental stability, electronic and ionic conductivity, and actuation. The active role of solvents is highlighted in the versatility of organogel properties. To differentiate between organogels and other gels, these are classified as gels filled with different organic liquids, including highly polar organic solvents and binary solvent systems. Most promising applications of organogels as sophisticated multifunctional materials are discussed in light of their unique features.  相似文献   
99.
Hydrazones based on mono- and bicyclic terpenoids (verbenone, menthone and carvone) have been investigated in vitro as potential biomembrane penetration enhancers. In this regard, liposomes composed of lecithin or cardiolipin as phospholipid phase components with incorporated fluorescence probes have been prepared using the thin-film ultrasonic dispersion method. The mean particle size of the obtained liposomes, established using laser diffraction, was found to be 583 ± 0.95 nm, allowing us to categorize them as multilamellar vesicles (MLVs) according to their morphology. Pursuant to fluorescence analysis, we may assume a reduction in microviscosity and, consequently, a decrease in the packing density of lecithin and cardiolipin lipids to be the major mechanism of action for terpenoid hydrazones 1–15. In order to determine the molecular organization of the lipid matrix, lipids were isolated from rat strata cornea (SCs) and their interaction with tested compounds was studied by means of Fourier transform infrared spectroscopy. FT-IR examination suggested that these hydrazones fluidized the SC lipids via the disruption of the hydrogen-bonded network formed by polar groups of SC constituents. The relationship between the structure of terpenoid hydrazones and their ability to enhance biomembrane penetration is discussed.  相似文献   
100.
An invariant (with respect to rotations) formalization of equations of linear and nonlinear elasticity theory is proposed. An equation of state (in the form of a convex generating potential) for various crystallographic systems is written. An algebraic approach is used, which does not require any geometric constructions related to the analysis of symmetry in crystals. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 127–142, September–October, 2008.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号