首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4296篇
  免费   675篇
  国内免费   512篇
化学   2475篇
晶体学   57篇
力学   128篇
综合类   30篇
数学   462篇
物理学   1016篇
无线电   1315篇
  2024年   18篇
  2023年   140篇
  2022年   165篇
  2021年   201篇
  2020年   223篇
  2019年   238篇
  2018年   198篇
  2017年   156篇
  2016年   207篇
  2015年   256篇
  2014年   279篇
  2013年   323篇
  2012年   341篇
  2011年   303篇
  2010年   267篇
  2009年   262篇
  2008年   280篇
  2007年   239篇
  2006年   202篇
  2005年   167篇
  2004年   146篇
  2003年   112篇
  2002年   129篇
  2001年   91篇
  2000年   81篇
  1999年   54篇
  1998年   48篇
  1997年   32篇
  1996年   45篇
  1995年   34篇
  1994年   21篇
  1993年   20篇
  1992年   18篇
  1991年   17篇
  1990年   16篇
  1989年   13篇
  1988年   9篇
  1987年   17篇
  1986年   13篇
  1985年   12篇
  1984年   9篇
  1983年   7篇
  1982年   6篇
  1981年   6篇
  1980年   5篇
  1979年   7篇
  1978年   5篇
  1977年   5篇
  1976年   4篇
  1910年   3篇
排序方式: 共有5483条查询结果,搜索用时 734 毫秒
51.
o-Xylene conversions has been investigated in the presence of MgNaY zeolites with different Si/Al ratios and degrees of exchange. Disproportionation proceeds to a higher degree than does isomerization. The distribution of reaction products is attributed to geometric factors. The results are in agreement with a monomolecular mechanism of isomerization.
- MgNaY Si/Al . , , . . .
  相似文献   
52.
In this paper, we investigate the Novikov equation with weak dissipation terms. First, we give the local well-posedness and the blow-up scenario. Then, we discuss the global existence of the solutions under certain conditions. After that, on condition that the compactly supported initial data keeps its sign, we prove the infinite propagation speed of our solutions, and establish the large time behavior. Finally, we also elaborate the persistence property of our solutions in weighted Sobolev space.  相似文献   
53.
姜迈  郑岩 《激光与红外》2023,53(2):261-270
针对现有红外与可见光图像配准不精确,边缘及细节纹理缺失,融合时间较长,不能突出重点目标等不足,提出一种基于SURF-HOG描述符与红外显著性特征的红外与可见光图像融合方法。首先,在红外与可见光图像配准阶段,在SURF(Speed-Up Robust Features,SURF)框架内构建基于HOG(Histogram of Oriented Gradient,HOG)的特征点描述符,并通过NNDR(Nearest Neighbor Distance Ratio,NNDR)进行红外与可见光图像的特征点匹配;其次,在显著特征提取阶段,先通过四叉树算法对源红外图像分解,然后通过贝塞尔插值法重建红外图像背景,接着分别对红外图像中的背景及目标进行自适应抑制以提取目标红外显著性特征;最后,结合已配准的可见光图像与重建后的红外图像以获取最终融合结果。实验结果表明,所提方法对不同场景下的红外与可见光图像具有较高的配准精度,不同场景下的融合结果不但主观视觉上具有显著的目标特征,同时背景纹理和边缘细节清晰,整体对比度适宜,运行时间最短,并且在客观评价指标上也取得了较好的效果。  相似文献   
54.
This paper is devoted to introduce a novel complex fifth-order memristive circuit system and its applications in synchronous stability and weak signal detection. Firstly, the typical dynamical behaviors of the memristive system are discussed by chaotic phase portrait, complexity analysis, one-parameter bifurcation and Lyapunov exponent spectrum. Secondly, the adaptive control method is applied to realize the synchronization between the drive memristive system (DMS) and the response memristive system (RMS). The results indicate that the synchronization method has strong robustness and anti-interference ability. Thirdly, the weak signal detection of the novel five-dimensional memristive system is realized by using the extreme sensitivity of chaotic system to initial values. Finally, the fifth-order memristive circuit is designed by using basic electronic elements and simulated by Multisim software. And the anti-interference ability and sensitivity of the fifth-order memristive circuit are further verified by adding different weak disturbance signals at different positions of the circuit.  相似文献   
55.
The low-earth orbit (LEO) satellite network, composed of a large number of satellite nodes, is a hot research topic at present. Due to the characteristics of the large-scale LEO satellite network, such as many satellite nodes, short orbit period, large dynamic change of topology, and unstable link-state, its communication quality of service (QoS) requirements are difficult to meet. Aiming at this problem, various factors that may affect data transmission are first analyzed. The network link selection problem is modeled as a multi-constraint optimization decision problem, a routing mathematical model based on linear programming (LP) is designed, and its solution is solved. Aiming at the problem of limited onboard computing resources, a multi-object optimization Dijkstra algorithm (MOODA) is designed. The MOODA finds the optimal path according to the comprehensive performance of the link. It solves the problems of poor comprehensive QoS performance and the low degree of load balancing of the paths found by the Dijkstra algorithm. The simulation results show that the paths found by the two algorithms have good QoS, robustness, and load balancing performance.  相似文献   
56.
Improving interfacial solar evaporation performance is crucial for the practical application of this technology in solar-driven seawater desalination. Lowering evaporation enthalpy is one of the most promising and effective strategies to significantly improve solar evaporation rate. In this study, a new pathway to lower vaporization enthalpy by introducing heterogeneous interactions between hydrophilic hybrid materials and water molecules is developed. 2D MoN1.2 nanosheets are synthesized and integrated with rGO nanosheets to form stacked MoN1.2-rGO heterostructures with massive junction interfaces for interfacial solar evaporation. Molecular dynamics simulation confirms that atomic thick 2D MoN1.2 and rGO in the MoN1.2-rGO heterostructures simultaneously interact with water molecules, while the interactions are remarkably different. These heterogeneous interactions cause an imbalanced water state, which easily breaks the hydrogen bonds between water molecules, leading to dramatically lowered vaporization enthalpy and improved solar evaporation rate (2.6 kg m−2 h−1). This study provides a promising strategy for designing 2D-2D heterostructures to regulate evaporation enthalpy to improve solar evaporate rate for clean water production.  相似文献   
57.
The integration of piezoelectric materials onto carbon fiber (CF) can add energy harvesting and self-power sensing capabilities enabling great potential for “Internet of Things” (IoT) applications in motion tracking, environmental sensing, and personal portable electronics. Herein, a CF-based smart composite is developed by integrating piezoelectric poly(3,4-ethylenedioxythiophene) (PEDOT)/CuSCN-coated ZnO nanorods onto the CF surfaces with no detrimental effect on the mechanical properties of the composite, forming composites using two different polymer matrices: highly flexible polydimethylsiloxane (PDMS) and more rigid epoxy. The PDMS-coated piezoelectric smart composite can serve as an energy harvester and a self-powered sensor for detecting variations in impact acceleration with increasing output voltage from 1.4 to 7.6 V under impact acceleration from 0.1 to 0.4 m s−2. Using epoxy as the matrix for a CF-reinforced plastic (CFRP) device with sensing and detection functions produces a voltage varying from 0.27 to 3.53 V when impacted at acceleration from 0.1 to 0.4 m s−2, with a lower output compared to the PDMS-coated device attributed to the greater stiffness of the matrix. Finally, spatially sensitive detection is demonstrated by positioning two piezoelectric structures at different locations, which can identify the location as well as the level of the impacting force from the fabricated device.  相似文献   
58.
Emerging soft ionotronics better match the human body mechanically and electrically compared to conventional rigid electronics. They hold great potential for human-machine interfaces, wearable and implantable devices, and soft machines. Among various ionotronic devices, ionic junctions play critical roles in rectifying currents as electrical p–n junctions. Existing ionic junctions, however, are limited in electrical and mechanical performance, and are difficult to fabricate and degrade. Herein, the design, fabrication, and characterization of tough transient ionic junctions fabricated via 3D ionic microgel printing is reported. The 3D printing method demonstrates excellent printability and allows one to fabricate ionic junctions of various configurations with high fidelity. By combining ionic microgels, degradable networks, and highly charged biopolymers, the ionic junctions feature high stretchability (stretch limit 27), high fracture energy (>1000 Jm−2), excellent electrical performance (current rectification ratio >100), and transient stability (degrade in 1 week). A variety of ionotronic devices, including ionic diodes, ionic bipolar junction transistors, ionic full-wave rectifiers, and ionic touchpads are further demonstrated. This study merges ionotronics, 3D printing, and degradable hydrogels, and will motivate the future development of high-performance transient ionotronics.  相似文献   
59.
Aqueous ammonium ion hybrid supercapacitor (A-HSC) combines the charge storage mechanisms of surface adsorption and bulk intercalation, making it a low-cost, safe, and sustainable energy storage candidate. However, its development is hindered by the low capacity and unclear charge storage fundamentals. Here, the strategy of phosphate ion-assisted surface functionalization is used to increase the ammonium ion storage capacity of an α-MoO3 electrode. Moreover, the understanding of charge storage mechanisms via structural characterization, electrochemical analysis, and theoretical calculation is advanced. It is shown that NH4+ intercalation into layered α-MoO3 is not dominant in the A-HSC system; rather, the charge storage mainly depends on the adsorption energy of surface “O” to NH4+. It is further revealed that the hydrogen bond chemistry of the coordination between “O” of surface phosphate ion and NH4+ is the reason for the capacity increase of MoO3. This study not only advances the basic understanding of rechargeable aqueous A-HSC but also demonstrates the promising future of surface engineering strategies for energy storage devices.  相似文献   
60.
Introducing anionic redox in layered oxides is an effective approach to breaking the capacity limit of conventional cationic redox. However, the anionic redox reaction generally suffers from excessive oxidation of lattice oxygen to O2 and O2 release, resulting in local structural deterioration and rapid capacity/voltage decay. Here, a Na0.71Li0.22Al0.05Mn0.73O2 (NLAM) cathode material is developed by introducing Al3+ into the transition metal (TM) sites. Thanks to the strong Al–O bonding strength and small Al3+ radius, the TMO2 skeleton and the holistic TM–O bonds in NLAM are comprehensively strengthened, which inhibits the excessive lattice oxygen oxidation. The obtained NLAM exhibits a high reversible capacity of 194.4 mAh g-1 at 20 mA g-1 and decent cyclability with 98.6% capacity retention over 200 cycles at 200 mA g−1. In situ characterizations reveal that the NLAM experiences phase transitions with an intermediate OP4 phase during the charge–discharge. Theoretical calculations further confirm that the Al substitution strategy is beneficial for improving the overlap between Mn 3d and O 2p orbitals. This finding sheds light on the design of layered oxide cathodes with highly reversible anionic redox for sodium storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号