首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25077篇
  免费   3321篇
  国内免费   3393篇
化学   14186篇
晶体学   288篇
力学   745篇
综合类   267篇
数学   1990篇
物理学   5731篇
无线电   8584篇
  2024年   37篇
  2023年   322篇
  2022年   469篇
  2021年   651篇
  2020年   628篇
  2019年   705篇
  2018年   622篇
  2017年   555篇
  2016年   908篇
  2015年   1034篇
  2014年   1230篇
  2013年   1685篇
  2012年   1910篇
  2011年   2002篇
  2010年   1620篇
  2009年   1622篇
  2008年   1891篇
  2007年   1753篇
  2006年   1628篇
  2005年   1406篇
  2004年   1280篇
  2003年   1152篇
  2002年   1298篇
  2001年   1096篇
  2000年   816篇
  1999年   613篇
  1998年   387篇
  1997年   392篇
  1996年   344篇
  1995年   297篇
  1994年   241篇
  1993年   233篇
  1992年   203篇
  1991年   144篇
  1990年   133篇
  1989年   107篇
  1988年   68篇
  1987年   62篇
  1986年   43篇
  1985年   43篇
  1984年   30篇
  1983年   22篇
  1982年   14篇
  1981年   16篇
  1980年   12篇
  1978年   13篇
  1977年   9篇
  1976年   9篇
  1974年   6篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 468 毫秒
991.
992.
Analytical and Bioanalytical Chemistry - Abnormal concentration of hydrogen peroxide (H2O2) in blood plasma and cells may lead to several diseases. Thus, it is important to develop a selective and...  相似文献   
993.
Non-small cell lung cancer (NSCLC) is a lethal non-immunogenic malignancy and proto-oncogene ROS-1 tyrosine kinase is one of its clinically relevant oncogenic markers. The ROS-1 inhibitor, crizotinib, demonstrated resistance due to the Gly2032Arg mutation. To curtail this resistance, researchers developed lorlatinib against the mutated kinase. In the present study, a receptor-ligand pharmacophore model exploiting the key features of lorlatinib binding with ROS-1 was exploited to identify inhibitors against the wild-type (WT) and the mutant (MT) kinase domain. The developed model was utilized to virtually screen the TimTec flavonoids database and the retrieved drug-like hits were subjected for docking with the WT and MT ROS-1 kinase. A total of 10 flavonoids displayed higher docking scores than lorlatinib. Subsequent molecular dynamics simulations of the acquired flavonoids with WT and MT ROS-1 revealed no steric clashes with the Arg2032 (MT ROS-1). The binding free energy calculations computed via molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) demonstrated one flavonoid (Hit) with better energy than lorlatinib in binding with WT and MT ROS-1. The Hit compound was observed to bind in the ROS-1 selectivity pocket comprised of residues from the β-3 sheet and DFG-motif. The identified Hit from this investigation could act as a potent WT and MT ROS-1 inhibitor.  相似文献   
994.
A three-component hydrogen-bonded covalent organic polymer, namely JLUE-HCOP-66, was fabricated via a facile multiple-linking-site solvothermal approach to overcome the weakness of poor function complexity and limited structure diversity of the pure covalent skeletons. The as-prepared JLUE-HCOP-66 polymers were employed to decontaminate ciprofloxacin (CIP), a popular F-quinolones (FQNs) antibiotic, from water and exhibited satisfactory adsorption performance. Specifically, JLUE-HCOP-66 polymers have high adsorption capacity with the maximum contribution of 111.1 mg/g according to the Langmuir model, good antiinterference to NaCl salts, and excellent regeneration property. The pH-dependent experiment results signified the probably dominated mechanism of electrostatic interaction. In addition, adsorption studies and structural characterization in combination illustrated that the pore-filling effect, hydrogen bonding formation might also govern the whole process, accompanied by electrostatic interaction, dipole-dipole complexation, π-π EDA interaction, and hydrophobic-hydrophobic interaction besides. Moreover, electrostatic potentials, as well as the frontier molecular orbital distributions (HOMO and LUMO) of CIP and JLUE-HCOP-66 fragment, were calculated using density functional theory to theoretically support the research. Furthermore, the response surface methodology (RSM) according to the CCD matrix was used to not only study the interactive and cooperative effects of initial CIP concentration, initial pH, ionic strength along with JLUE-HCOP-66 dosage on CIP removal using JLUE-HCOP-66 but also optimize the operation conditions. Given the peculiar structure and functional feature, this work could hopefully bring HCOPs into the practical applications of such challenging and persistent ciprofloxacin potent removal with further large-scale efficiency.  相似文献   
995.
Folium Hibisci Mutabilis, a new member of Chinese Pharmacopoeia, can treat some diseases induced by reactive oxygen species. The study prepared a lyophilized aqueous extract of Folium Hibisci Mutabilis (LAFHM). LAFHM was found to enrich eight flavonoids (i.e., quercetin, luteolin, hyperoside, isoquercitrin, rutin, kaempferol, tiliroside, and vitexin) by HPLC analysis. These flavonoids were further compared using antioxidant assays, where triliroside and vitexin always exhibited higher IC50 values than the others. In ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry analysis, these flavonoids could basically give two characteristic m/z values (226 and 196) and their corresponding double m/z values (i.e., 602, 570, 926, 926, 570, 1186, and 862), when treated by 1,1-diphenyl-2-picryl-hydrazl radical (DPPH?). Finally, the coupling products of DPPH?-treated triliroside were investigated using computational chemistry. It was found that the –OH in para-coumaroyl moiety to have the lowest bond disassociation energy among all phenolic -OHs in the triliroside. In conclusion, Folium Hibisci Mutabilis contains the above eight antioxidant flavonoids. Despite of the different antioxidant levels, they can generally produce flavonoid-radical coupling product and flavonoid-flavonoid homodimer during antioxidant process. Especially, tiliroside uses para-coumaroyl as linker to construct a tiliroside-radical coupling product at the meta-carbon atom.  相似文献   
996.
Keratin is widely recognized as a high‐quality renewable protein resource for biomedical applications. Despite their extensive existence, keratin resources such as feathers, wool, and hair exhibit high stability and mechanical properties because of their high disulfide bond content. Consequently, keratin extraction is challenging and its application is greatly hindered. In this work, a biological extraction strategy is proposed for the preparation of bioactive keratin and the fabrication of self‐assembled keratin hydrogels (KHs). Based on moderate and controlled hydrolysis by keratinase, keratin with a high molecular weight of approximately 45 and 28 kDa that retain its intrinsic bioactivities is obtained. The keratin products show excellent ability to promote cell growth and migration and are conferred with significant antioxidant ability because of their intrinsically high cysteine content. In addition, without the presence of any cross‐linking agent, the extracted keratin can self‐assemble into injectable hydrogels. The KHs exhibit a porous network structure and 3D culture ability, showing potential in promoting wound healing. This enzyme‐driven keratin extraction strategy opens up a new approach for the preparation of keratin that can self‐assemble into injectable hydrogels for biomedical engineering.  相似文献   
997.
Two new coordination complexes based on benzimidazole dicarboxylic acid, Zn(Hbidc)?H2O ( 1 ) and Cd(Hbidc)(H2O) ( 2 ), have been synthesized under hydrothermal conditions. The complexes were characterized using elemental analysis, infrared and UV–visible spectroscopies, powder X‐ray diffraction, thermogravimetry and single‐crystal X‐ray diffraction. Structural analyses showed that the crystal structures of 1 and 2 are different, due to the various modes of linking of the benzimidazole dicarboxylic acid. Complex 1 has a two‐dimensional network structure and 2 has a three‐dimensional network structure. In addition, we studied the performance of the fluorescence response of two complexes. Results showed that the complexes can be used as chemical sensors for multifunctional testing, such as for UO22+, xanthine and Fe3+ ions. Even if the concentration is very low, they could also be detected, showing that coordination complexes 1 and 2 have very high fluorescence sensitivity. The detection limit for UO22+ is 5.42 nM ( 1 ) and 0.02 nM ( 2 ), that for xanthine is 1.37 nM ( 1 ) and 0.28 nM ( 2 ), and that for Fe3+ ions is 0.76 nM ( 1 ) and 0.62 nM ( 2 ).  相似文献   
998.
Bicyclol is a synthetic drug widely used to treat chronic hepatitis B. This study aimed to develop a selective, sensitive and high‐throughput liquid chromatography–tandem mass spectrometric method for the detection of bicyclol in human plasma. Bicyclol was detected using a multiple reaction monitoring mode, with ammonium adduct ions (m/z 408.2) as the precursor ion and the [M‐CH3]+ ion (m/z 373.1) subjected to demethylation as the product ion. Chromatographic separation was achieved using a Zobax Eclipse XDB‐C18 column with a gradient elution and a mobile phase of 2 mm ammonium formate and acetonitrile. Bicyclol was extracted from plasma matrix by precipitation. A linear detection response was obtained for bicyclol ranging from 0.500 to 240 ng/mL, and the lower limit of quantification was 0.500 ng/mL. The intra‐ and inter‐day precisions were all ≤7.4%, and the accuracies were within ±6.0%. The extraction recovery was >95.9%, and the matrix effects were between 96.0% and 108%. Bicyclol was found to be unstable in human plasma at room temperature, but the degradation was minimized by conducting sample collection and preparation in an ice bath. The validated method was successfully applied to investigate the pharmacokinetics of bicyclol tablets in six healthy Chinese volunteers.  相似文献   
999.
Detailed gas-phase chemical kinetic models are widely used in combustion research, and many new mechanisms for different fuels and reacting conditions are developed each year. Recent works have highlighted the need for error checking when preparing such models, but a useful community tool to perform such analysis is missing. In this work, we present a simple online tool to screen chemical kinetic mechanisms for bimolecular reactions exceeding collision limits. The tool is implemented on a user-friendly website, cloudflame.kaust.edu.sa, and checks three different classes of bimolecular reactions; (ie, pressure independent, pressure-dependent falloff, and pressure-dependent PLOG). In addition, two other online modules are provided to check thermodynamic properties and transport parameters to help kinetic model developers determine the sources of errors for reactions that are not collision limit compliant. Furthermore, issues related to unphysically fast timescales can remain an issue even if all bimolecular reactions are within collision limits. Therefore, we also present a procedure to screen ultrafast reaction timescales using computational singular perturbation. For demonstration purposes only, three versions of the rigorously developed AramcoMech are screened for collision limit compliance and ultrafast timescales, and recommendations are made for improving the models. Larger models for biodiesel surrogates, tetrahydropyran, and gasoline surrogates are also analyzed for exemplary purposes. Numerical simulations with updated kinetic parameters are presented to show improvements in wall-clock time when resolving ultrafast timescales.  相似文献   
1000.
Necessary and sufficient conditions for qualitative properties of infinite dimensional linear programing problems such as solvability, duality, and complementary slackness conditions are studied in this article. As illustrations for the results, we investigate the parametric version of Gale’s example.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号