首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   843篇
  免费   70篇
  国内免费   1篇
化学   573篇
晶体学   4篇
力学   21篇
数学   79篇
物理学   169篇
无线电   68篇
  2023年   9篇
  2022年   16篇
  2021年   24篇
  2020年   30篇
  2019年   28篇
  2018年   18篇
  2017年   13篇
  2016年   45篇
  2015年   26篇
  2014年   25篇
  2013年   40篇
  2012年   55篇
  2011年   74篇
  2010年   33篇
  2009年   28篇
  2008年   46篇
  2007年   46篇
  2006年   36篇
  2005年   37篇
  2004年   34篇
  2003年   28篇
  2002年   17篇
  2001年   6篇
  2000年   7篇
  1999年   6篇
  1998年   5篇
  1997年   16篇
  1996年   9篇
  1995年   7篇
  1994年   17篇
  1993年   8篇
  1992年   7篇
  1991年   12篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   6篇
  1986年   8篇
  1985年   4篇
  1983年   8篇
  1982年   3篇
  1978年   5篇
  1977年   4篇
  1976年   5篇
  1973年   4篇
  1968年   4篇
  1967年   5篇
  1966年   3篇
  1960年   4篇
  1958年   4篇
排序方式: 共有914条查询结果,搜索用时 100 毫秒
141.
142.
143.
Solvent effects in homogeneous catalysis are known to affect catalytic activity. Whilst these effects are often described using qualitative features, such as Kamlet-Taft parameters, experimental tools able to quantify and reveal in more depth such effects have remained unexplored. In this work, PFG NMR diffusion and T1 relaxation measurements have been carried out to probe solvent effects in the homogeneous catalytic reduction of propionaldehyde to 1-propanol in the presence of aluminium isopropoxide catalyst. Using data on diffusion coefficients it was possible to estimate trends in aggregation of different solvents. The results show that solvents with a high hydrogen-bond accepting ability, such as ethers, tend to form larger aggregates, which slow down the molecular dynamics of aldehyde molecules, as also suggested by T1 measurements, and preventing their access to the catalytic sites, which results in the observed decrease of catalytic activity. Conversely, weakly interacting solvents, such as alkanes, do not lead to the formation of such aggregates, hence allowing easy access of the aldehyde molecules to the catalytic sites, resulting in higher catalytic activity. The work reported here is a clear example on how combining traditional catalyst screening in homogeneous catalysis with NMR diffusion and relaxation time measurements can lead to new physico-chemical insights into such systems by providing data able to quantify aggregation phenomena and molecular dynamics.  相似文献   
144.
145.
Ion‐insertion capacitors show promise to bridge the gap between supercapacitors of high power densities and batteries of high energy densities. While research efforts have primarily focused on Li+‐based capacitors (LICs), Na+‐based capacitors (SICs) are theoretically cheaper and more sustainable. Owing to the larger size of Na+ compared to Li+, finding high‐rate anode materials for SICs has been challenging. Herein, an SIC anode architecture is reported consisting of TiO2 nanoparticles anchored on a sheared‐carbon nanotubes backbone (TiO2/SCNT). The SCNT architecture provides advantages over other carbon architectures commonly used, such as reduced graphene oxide and CNT. In a half‐cell, the TiO2/SCNT electrode shows a capacity of 267 mAh g?1 at a 1 C charge/discharge rate and a capacity of 136 mAh g?1 at 10 C while maintaining 87% of initial capacity over 1000 cycles. When combined with activated carbon (AC) in a full cell, an energy density and power density of 54.9 Wh kg?1 and 1410 W kg?1, respectively, are achieved while retaining a 90% capacity retention over 5000 cycles. The favorable rate capability, energy and power density, and durability of the electrode is attributed to the enhanced electronic and Na+ conductivity of the TiO2/SCNT architecture.  相似文献   
146.
Reversible solid oxide cells based on ceramic proton conductors have potential to be the most efficient system for large‐scale energy storage. The performance and long‐term durability of these systems, however, are often limited by the ionic conductivity or stability of the proton‐conducting electrolyte. Here new family of solid oxide electrolytes, BaHfxCe0.8?xY0.1Yb0.1O3?δ (BHCYYb), which demonstrate a superior ionic conductivity to stability trade‐off than the state‐of‐the‐art proton conductors, BaZrxCe0.8?xY0.1Yb0.1O3?δ (BZCYYb), at similar Zr/Hf concentrations, as confirmed by thermogravimetric analysis, Raman, and X‐ray diffraction analysis of samples over 500 h of testing are reported. The increase in performance is revealed through thermodynamic arguments and first‐principle calculations. In addition, lab scale full cells are fabricated, demonstrating high peak power densities of 1.1, 1.4, and 1.6 W cm?2 at 600, 650, and 700 °C, respectively. Round‐trip efficiencies for steam electrolysis at 1 A cm?2 are 78%, 72%, and 62% at 700, 650, and 600 °C, respectively. Finally, CO2? H2O electrolysis is carried out for over 700 h with no degradation.  相似文献   
147.
Molecular weight is an important factor determining the morphology and performance of all‐polymer solar cells. Through the application of direct arylation polycondention, a series of batches of a fluorinated naphthalene diimide‐based acceptor polymer are prepared with molecular weight varying from Mn = 20 to 167 kDa. Used in conjunction with a common low bandgap donor polymer, the effect of acceptor molecular weight on solar cell performance, morphology, charge generation, and transport is explored. Increasing the molecular weight of the acceptor from Mn = 20 to 87 kDa is found to increase cell efficiency from 2.3% to 5.4% due to improved charge separation and transport. Further increasing the molecular weight to Mn = 167 kDa however is found to produce a drop in performance to 3% due to liquid–liquid phase separation which produces coarse domains, poor charge generation, and collection. In addition to device studies, a systematic investigation of the microstructure and photophysics of this system is presented using a combination of transmission electron microscopy, grazing‐incidence wide‐angle X‐ray scattering, near‐edge X‐ray absorption fine‐structure spectroscopy, photoluminescence quenching, and transient absorption spectroscopy to provide a comprehensive understanding of the interplay between morphology, photophysics, and photovoltaic performance.  相似文献   
148.
We report the use of dielectrophoresis (DEP) to position U-937 monocytes within a non-uniform electric field, prior to electroporation (EP) for gene delivery. DEP positioning and EP pulsing were both accomplished using a common set of inert planar electrodes, micro-fabricated on a glass substrate. A single-shell model of the cell's dielectric properties and finite-element modeling of the electric field distribution permitted us to predict the major features of cell positioning. The extent to which electric pulses increased the permeability of the cell membranes to fluorescent molecules and to pEGFPLuc DNA plasmids were found to depend on prior positioning. For a given set of pulse parameters, EP was either irreversible (resulting in cytolysis), reversible (leading to gene delivery), or not detectable, depending on where cells were positioned. Our results clearly demonstrate that position-dependent EP of cells in a non-uniform electric field can be controlled by DEP.  相似文献   
149.
150.
The Cs(2) 2 (3)Delta(1g) and b (3)Pi(0u) states have been observed by infrared-infrared double resonance spectroscopy for the first time. 221 2 (3)Delta(1g)<--A (1)Sigma(u) (+)<--X (1)Sigma(g) (+) double resonance lines have been assigned to transitions into the 2 (3)Delta(1g) v=6-13 vibrational levels. Resolved fluorescence into the b (3)Pi(0u) v(')=0-48 levels has been recorded. Molecular constants and potential energy curves are determined by the global fit of the entire set of the experimental data. Theoretical potential energy curves of the 2 (3)Delta(g) and b (3)Pi(u) states have been determined in the framework of the pseudopotential method and are compared with the experimental results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号